# JD Emberson

JD is a computational cosmologist in the Argonne Computational Science (CPS) Division. He has a broad interest in the development and application of numerical techniques for large-scale cosmological structure formation simulations. This includes both N-body as well as hydrodynamic methods in order to gain insight into various astrophysical phenomena including dark energy, neutrinos, and primordial non-Gaussianity (see word cloud below). JD is one of the main developers of HACC with an emphasis on integrating robust hydrodynamical modeling for use on next-generation Exascale platforms. A large part of this effort includes understanding the systematic errors associated with the discrete nature of simulations and the various modeling choices made in multi-species and sub-resolution frameworks. JD has a keen interest in scientific data visualization; a collection of animations from his recent simulation endeavors can be found below.

#### Codes

- SONICC is a python code that computes density and velocity transfer functions for use in the initial conditions of cosmological neutrino simulations. The transfer functions are backscaled from CAMB at a specified target redshift using a scale-dependent growth function that yields self-consistent evolution for all three matter species (cold dark matter, baryons, massive neutrinos) in the Newtonian forward model of the simulation.

#### Animations

#### Publications

**Optimization and Quality Assessment of Baryon Pasting for Intracluster Gas using the Borg Cube Simulation**

F. Kéruzoré, L.E. Bleem, M. Buehlmann, J.D. Emberson, N. Frontiere, S. Habib, K. Heitmann, and P. Larsen

Submitted to MNRAS. arXiv:2306.13807.**Numerical Discreteness Errors in Multi-Species Cosmological N-body Simulations**

X. Liu, J.D. Emberson, M. Buehlmann, N. Frontiere, and S. Habib

MNRAS, 522, 3 (2023). DOI:10.1093/mnras/stad1176. arXiv:2303.00639.**Improving initialization and evolution accuracy of cosmological neutrino simulations**

J.M. Sullivan, J.D. Emberson, S. Habib, and N. Frontiere

JCAP, 2023, 6, 3 (2023). DOI:10.1088/1475-7516/2023/06/003. arXiv:2302.09134.**Modeling the Lyman-alpha forest with Eulerian and SPH hydrodynamical methods**

S. Chabanier, J.D. Emberson, Z. Lukic, J. Pulido, S. Habib, E. Rangel, J. Sexton, N. Frontiere, and M. Buehlmann

MNRAS, 518, 3 (2023). DOI:10.1093/mnras/stac3294. arXiv:2207.05023.**Simulating Hydrodynamics in Cosmology with CRK-HACC**

N. Frontiere, J.D. Emberson, M. Buehlmann, J. Adamo, S. Habib, K. Heitmann, and C.-A. Faucher-Giguere

The Astrophysical Journal Supplement Series, 264, 2 (2023). DOI:10.3847/1538-4365/aca58d. arXiv:2202.02840.**Measuring the evolution of intergalactic gas from z=0 to 5 using the kinematic Sunyaev-Zel’dovich effect**

J. Chaves-Montero, C. Hernandez-Monteagudo, R. Angulo, and J.D. Emberson

MNRAS, 503, 2 (2021). DOI:10.1093/mnras/staa3782. arXiv:1911.10690.**On the road to percent accuracy III: non-linear reaction of the matter power spectrum to massive neutrinos**

M. Cataneo, J.D. Emberson, D. Inman, J. Harnois-Deraps, and C. Heymans

MNRAS, 491, 3 (2020). DOI:10.1093/mnras/stz3189. arXiv:1909.02561.**The Borg Cube Simulation: Cosmological Hydrodynamics with CRK-SPH**

J.D. Emberson, N. Frontiere, S. Habib, K. Heitmann, P. Larsen, A. Pope, and H. Finkel

The Astrophysical Journal, 877, 85 (2019). DOI:10.3847/1538-4357/ab1b31. arXiv:1811.03593.**Cosmological neutrino simulations at extreme scale**

J.D. Emberson, H.-R. Yu, D. Inman, T.-J. Zhang, U.-L. Pen, et al.

Research in Astronomy and Astrophysics, 17, 085 (2017). DOI:10.1088/1674-4527/17/8/85. arXiv:1611.01545.**Measurement of the Cold Dark Matter-Neutrino Dipole in the TianNu Simulation**

D. Inman, H.-R. Yu, H.-M. Zhu, J.D. Emberson, et al.

Physical Review D, 95, 083518 (2017). DOI:10.1103/PhysRevD.95.083518. arXiv:1610.09354.**Differential Neutrino Condensation onto Cosmic Structure**

H.-R. Yu, J.D. Emberson, D. Inman, T.-J. Zhang, U.-L. Pen, et al.

Nature Astronomy, 1, 0143 (2017). DOI:10.1038/s41550-017-0143. arXiv:1609.08968.**Evolution of Low Mass Galactic Subhalos and Dependence on Concentration**

J.D. Emberson, T. Kobayashi, and M.A. Alvarez

The Astrophysical Journal, 812, 9 (2015). DOI:10.1038/s41550-017-0143. arXiv:1609.08968.**Precision reconstruction of the dark matter-neutrino relative velocity from N-body simulations**

D. Inman, J.D. Emberson, U.-L. Pen, A. Farchi, H.-R. Yu, and J. Harnois-Deraps

Physical Review D, 92, 023502 (2015). DOI:10.1103/PhysRevD.92.023502. arXiv:1503.07480.**High Performance P3M N-body code: CUBEP3M**

J. Harnois-Deraps, U.-L. Pen, I.T. Iliev, H. Merz, J.D. Emberson, and V. Desjacques

MNRAS, 436, 540 (2013). DOI:10.1093/mnras/stt1591. arXiv:1208.5098.**The Opacity of the Intergalactic Medium During Reionization: Resolving Small-Scale Structure**

J.D. Emberson, R.M. Thomas, and M.A. Alvarez

The Astrophysical Journal, 763, 146 (2013). DOI:10.1088/0004-637X/763/2/146. arXiv:1208.3679.**Interpolation in waveform space: enhancing the accuracy of gravitational waveform families using numerical relativity**

K. Cannon, J.D. Emberson, C. Hanna, D. Keppel, and H. Pfeiffer

Physical Review D, 87, 044008 (2013). DOI:10.1103/PhysRevD.87.044008. arXiv:1211.7095.