Publications

Calendar Year 2024

  1. Techno-economic analysis of renewable energy generation at the South Pole
    Babinec, S., Baring-Gould, I., Bender, A.N., Blair, N., Li, X., Muehleisen, R.T., Olis, D., and Ovaitt, S. (2024) Renewable and Sustainable Energy Reviews, 193, 114274
  2. SPT Clusters with DES and HST Weak Lensing. II. Cosmological Constraints from the Abundance of Massive Halos
    Bocquet, S., Grandis, S., Bleem, L. E., et al. (2024). arXiv, arXiv:2401.02075.
  3. Dark Energy Survey Year 3 results: redshift calibration of the MAGLIM lens sample from the combination of SOMPZ and clustering and its impact on cosmology
    Giannini, G., Alarcon, A., Gatti, M., et al. (2024). MNRAS, 527, 2010.
  4. A Comparison of Star-formation Histories Derived from UniverseMachine and LEGA-C at 0.6 < z < 1
    Steel, C., Pearl, A., Kaushal, Y., & Bezanson, R. (2024). RNAAS, 8, 16.
  5. Cosmological shocks around galaxy clusters: a coherent investigation with DES, SPT, and ACT
    Anbajagane, D., Chang, C., Baxter, E. J., et al. (2024). MNRAS, 527, 9378.

Calendar Year 2023

  1. The hydrostatic-to-lensing mass bias from resolved X-ray and optical-IR data
    Muñoz-Echeverría, M., Macías-Pérez, J. F., Pratt, G. W., et al. (2023). arXiv, arXiv:2312.01154.
  2. Measurement of gravitational lensing of the cosmic microwave background using SPT-3G 2018 data
    Pan, Z., Bianchini, F., Wu, W. L. K., et al. (2023). PhRvD, 108, 122005.
  3. CLASS Observations of Atmospheric Cloud Polarization at millimeter Wavelengths
    Li, Y., Appel, J. W., Bennett, C. L., et al. (2023). ApJ, 958, 154.
  4. The stratification of ISM properties in the edge-on galaxy NGC 891 revealed by NIKA2
    Katsioli, S., Xilouris, E. M., Kramer, C., et al. (2023). A&A, 679, A7.
  5. A differentiable model of the evolution of dark matter halo concentration
    Stevanovich, D., Hearin, A. P., & Nagai, D. (2023). MNRAS, 526, 1528.
  6. The intrinsic alignment of red galaxies in DES Y1 redMaPPer galaxy clusters
    Zhou, C., Tong, A., Troxel, M. A., et al. (2023). MNRAS, 526, 323.
  7. The SPT-Chandra BCG Spectroscopic Survey I: Evolution of the Entropy Threshold for Cooling and Feedback in Galaxy Clusters Over the Last 10 Gyr
    Calzadilla, M. S., McDonald, M., Benson, B. A., et al. (2023). arXiv, arXiv:2311.00396.
  8. Dissecting the Thermal SZ Power Spectrum by Halo Mass and Redshift in SPT-SZ Data and Simulations
    Hernandez, J., Bleem, L., Crawford, T., et al. (2023). OJAp, 6, 41.
  9. A data compression and optimal galaxy weights scheme for Dark Energy Spectroscopic Instrument and weak lensing data sets
    Ruggeri, R., Blake, C., DeRose, J., et al. (2023). MNRAS, 525, 3865.
  10. Galaxy Clusters Discovered via the Thermal Sunyaev-Zel’dovich Effect in the 500-square-degree SPTpol Survey
    Bleem, L. E., Klein, M., Abbott, T. M. C., et al. (2023). arXiv, arXiv:2311.07512.
  11. Optimization and Quality Assessment of Baryon Pasting for Intracluster Gas using the Borg Cube Simulation
    Kéruzoré, F., Bleem, L. E., Buehlmann, M., et al. (2023). OJAp, 6, 43.
  12. Synthetic light-cone catalogues of modern redshift and weak lensing surveys waith ABACUSSUMMIT
    Hadzhiyska, B., Yuan, S., Blake, C., et al. (2023). MNRAS, 525, 4367.
  13. The Dark Energy Survey Year 3 high-redshift sample: selection, characterization, and analysis of galaxy clustering
    Sánchez, C., Alarcon, A., Bernstein, G. M., et al. (2023). MNRAS, 525, 3896.
  14. The Atacama Cosmology Telescope: Systematic Transient Search of 3 Day Maps
    Li, Y., Biermann, E., Naess, S., et al. (2023). ApJ, 956, 36.
  15. CLASS Data Pipeline and Maps for 40 GHz Observations through 2022
    Li, Y., Eimer, J. R., Osumi, K., et al. (2023). ApJ, 956, 77.
  16. SPT Clusters with DES and HST Weak Lensing. I. Cluster Lensing and Bayesian Population Modeling of Multi-Wavelength Cluster Datasets
    Bocquet, S., Grandis, S., Bleem, L. E., et al. (2023). arXiv, arXiv:2310.12213.
  17. The XXL Survey LV. Pressure profile and $Y_{\rm SZ}$-$M$ scaling relation in three low-mass galaxy clusters at $z\sim1$ observed with NIKA2
    Adam, R., Ricci, M., Eckert, D., et al. (2023). arXiv, arXiv:2310.05819.
  18. Constructing Impactful Machine Learning Research for Astronomy: Best Practices for Researchers and Reviewers
    Huppenkothen, D., Ntampaka, M., Ho, M., et al. (2023). arXiv, arXiv:2310.12528.
  19. NIKA2 Cosmological Legacy Survey. Survey description and galaxy number counts
    Bing, L., Béthermin, M., Lagache, G., et al. (2023). A&A, 677, A66.
  20. The DESI One-Percent Survey: Evidence for Assembly Bias from Low-Redshift Counts-in-Cylinders Measurements
    Pearl, A. N., Zentner, A. R., Newman, J. A., et al. (2023). arXiv, arXiv:2309.08675.
  21. SPT-SZ MCMF: An extension of the SPT-SZ catalog over the DES region
    Klein, M., Mohr, J. J., Bocquet, S., et al. (2023). arXiv, arXiv:2309.09908.
  22. The Dark Energy Survey Year 3 and eBOSS: constraining galaxy intrinsic alignments across luminosity and colour space
    Samuroff, S., Mandelbaum, R., Blazek, J., et al. (2023). MNRAS, 524, 2195.
  23. A Gradual Decline of Star Formation since Cluster Infall: New Kinematic Insights into Environmental Quenching at 0.3 < z < 1.1
    Kim, K. J., Bayliss, M. B., Noble, A. G., et al. (2023). ApJ, 955, 32.
  24. Carbon-enhanced metal-poor star candidates from BP/RP spectra in Gaia DR3
    Lucey, M., Al Kharusi, N., Hawkins, K., et al. (2023). MNRAS, 523, 4049.
  25. Low-Loss Si-Based Dielectrics for High Frequency Components of Superconducting Detectors
    Lisovenko, M., Pan, Z., Barry, P. S., et al. (2023). ITAS, 33, 3264174.
  26. Quasiparticle Generation-Recombination Noise in the Limit of Low Detector Volume
    Li, J., Barry, P. S., Cecil, T., et al. (2023). ITAS, 33, 3237645.
  27. Fabrication Development for SPT-SLIM, a Superconducting Spectrometer for Line Intensity Mapping
    Cecil, T., Albert, C., Anderson, A. J., et al. (2023). ITAS, 33, 3259919.
  28. Noise Optimization for MKIDs With Different Design Geometries and Material Selections
    Pan, Z., Dibert, K. R., Zhang, J., et al. (2023). ITAS, 33, 3250167.
  29. Neural Network Based Point Spread Function Deconvolution For Astronomical Applications
    Wang, H., Sreejith, S., Lin, Y., et al. (2023). OJAp, 6, 30.
  30. Dark Energy Survey Year 3 results: magnification modelling and impact on cosmological constraints from galaxy clustering and galaxy-galaxy lensing
    Elvin-Poole, J., MacCrann, N., Everett, S., et al. (2023). MNRAS, 523, 3649.
  31. The LSST Dark Energy Science Collaboration
    Heitmann, K., Chang, C., & Zuntz, J. (2023). Mirro, 5, 24.
  32. Measurement of Dielectric Loss in Silicon Nitride at Centimeter and Millimeter Wavelengths
    Pan, Z., Barry, P. S., Cecil, T., et al. (2023). ITAS, 33, 3264953.
  33. Modeling the Galaxy Distribution in Clusters using Halo Cores
    Korytov, D., Rangel, E., Bleem, L., et al. (2023). OJAp, 6, 24.
  34. The Atacama Cosmology Telescope: High-resolution component-separated maps across one-third of the sky
    Coulton, W. R., Madhavacheril, M. S., Duivenvoorden, A. J., et al. (2023). arXiv, arXiv:2307.01258.
  35. Galaxy Clustering in the Mira-Titan Universe. I. Emulators for the Redshift Space Galaxy Correlation Function and Galaxy-Galaxy Lensing
    Kwan, J., Saito, S., Leauthaud, A., et al. (2023). ApJ, 952, 80.
  36. Measurement of the CMB temperature power spectrum and constraints on cosmology from the SPT-3G 2018 T T , T E , and E E dataset
    Balkenhol, L., Dutcher, D., Spurio Mancini, A., et al. (2023). PhRvD, 108, 023510.
  37. Kinematic Sunyaev-Zel’dovich effect with ACT, DES, and BOSS: A novel hybrid estimator
    Mallaby-Kay, M., Amodeo, S., Hill, J. C., et al. (2023). PhRvD, 108, 023516.
  38. A joint Roman Space Telescope and Rubin Observatory synthetic wide-field imaging survey
    Troxel, M. A., Lin, C., Park, A., et al. (2023). MNRAS, 522, 2801.
  39. Non-local contribution from small scales in galaxy-galaxy lensing: comparison of mitigation schemes
    Prat, J., Zacharegkas, G., Park, Y., et al. (2023). MNRAS, 522, 412.
  40. Mapping gas around massive galaxies: cross-correlation of DES Y3 galaxies and Compton-y maps from SPT and Planck
    Sánchez, J., Omori, Y., Chang, C., et al. (2023). MNRAS, 522, 3163.
  41. Deep-field Metacalibration
    Zhang, Z., Sheldon, E. S., & Becker, M. R. (2023). OJAp, 6, 16.
  42. Toward Accurate Modeling of Galaxy Clustering on Small Scales: Halo Model Extensions and Lingering Tension
    Beltz-Mohrmann, G. D., Szewciw, A. O., Berlind, A. A., & Sinha, M. (2023). ApJ, 948, 100.
  43. Redshift Evolution of the Feedback-Cooling Equilibrium in the Core of 48 SPT Galaxy Clusters: A Joint Chandra-SPT-ATCA Analysis
    Ruppin, F., McDonald, M., Hlavacek-Larrondo, J., et al. (2023). ApJ, 948, 49.
  44. Cluster Cosmology Without Cluster Finding
    Xhakaj, E., Leauthaud, A., Lange, J., et al. (2023). arXiv, arXiv:2306.03777.
  45. Metadetection Weak Lensing for the Vera C. Rubin Observatory
    Sheldon, E. S., Becker, M. R., Jarvis, M., Armstrong, R., & LSST Dark Energy Science Collaboration (2023). OJAp, 6, 17.
  46. DSPS: Differentiable stellar population synthesis
    Hearin, A. P., Chaves-Montero, J., Alarcon, A., Becker, M. R., & Benson, A. (2023). MNRAS, 521, 1741.
  47. DESI Survey Validation Spectra Reveal an Increasing Fraction of Recently Quenched Galaxies at z 1
    Setton, D. J., Dey, B., Khullar, G., et al. (2023). ApJL, 947, L31.
  48. The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters
    Madhavacheril, M. S., Qu, F. J., Sherwin, B. D., et al. (2023). arXiv, arXiv:2304.05203.
  49. SPT-CL J2215-3537: A Massive Starburst at the Center of the Most Distant Relaxed Galaxy Cluster
    Calzadilla, M. S., Bleem, L. E., McDonald, M., et al. (2023). ApJ, 947, 44.
  50. Constraints on S8 from a full-scale and full-shape analysis of redshift-space clustering and galaxy-galaxy lensing in BOSS
    Lange, J. U., Hearin, A. P., Leauthaud, A., et al. (2023). MNRAS, 520, 5373.
  51. The catalog-to-cosmology framework for weak lensing and galaxy clustering for LSST
    Prat, J., Zuntz, J., Chang, C., et al. (2023). OJAp, 6, 13.
  52. ACT-DR5 Sunyaev-Zel’dovich Clusters: weak lensing mass calibration with KiDS
    Robertson, N. C., Sifón, C., Asgari, M., et al. (2023). arXiv, arXiv:2304.10219.
  53. The Mira-Titan Universe – IV. High-precision power spectrum emulation
    Moran, K. R., Heitmann, K., Lawrence, E., et al. (2023). MNRAS, 520, 3443.
  54. The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth
    Qu, F. J., Sherwin, B. D., Madhavacheril, M. S., et al. (2023). arXiv, arXiv:2304.05202.
  55. Dark Energy Survey Year 3 results: Constraints on extensions to Λ CDM with weak lensing and galaxy clustering
    Abbott, T. M. C., Aguena, M., Alarcon, A., et al. (2023). PhRvD, 107, 083504.
  56. Simulating image coaddition with the Nancy Grace Roman Space Telescope: II. Analysis of the simulated images and implications for weak lensing
    Yamamoto, M., Laliotis, K., Macbeth, E., et al. (2023). arXiv, arXiv:2303.08750.
  57. Application of probabilistic modeling and automated machine learning framework for high-dimensional stress field
    Luan, L., Ramachandra, N., Krishnan Ravi, S., et al. (2023). arXiv, arXiv:2303.16869.
  58. Simultaneous Millimeter-wave, Gamma-Ray, and Optical Monitoring of the Blazar PKS 2326-502 during a Flaring State
    Hood, J. C., Simpson, A., McDaniel, A., et al. (2023). ApJL, 945, L23.
  59. panco2: a Python library to measure intracluster medium pressure profiles from Sunyaev-Zeldovich observations
    Kéruzoré, F., Mayet, F., Artis, E., et al. (2023). OJAp, 6, 9.
  60. Simulating image coaddition with the Nancy Grace Roman Space Telescope: I. Simulation methodology and general results
    Hirata, C. M., Yamamoto, M., Laliotis, K., et al. (2023). arXiv, arXiv:2303.08749.
  61. Simulating Hydrodynamics in Cosmology with CRK-HACC
    Frontiere, N., Emberson, J. D., Buehlmann, M., et al. (2023). ApJS, 264, 34.
  62. Evidence for AGN-regulated Cooling in Clusters at z 1.4: A Multiwavelength View of SPT-CL J0607-4448
    Masterson, M., McDonald, M., Ansarinejad, B., et al. (2023). ApJ, 944, 164.
  63. Constraining the baryonic feedback with cosmic shear using the DES Year-3 small-scale measurements
    Chen, A., Aricò, G., Huterer, D., et al. (2023). MNRAS, 518, 5340.
  64. Measurement of the mean central optical depth of galaxy clusters via the pairwise kinematic Sunyaev-Zel’dovich effect with SPT-3G and DES
    Schiappucci, E., Bianchini, F., Aguena, M., et al. (2023). PhRvD, 107, 042004.
  65. Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and P l a n c k . II. Cross-correlation measurements and cosmological constraints
    Chang, C., Omori, Y., Baxter, E. J., et al. (2023). PhRvD, 107, 023530.
  66. Diffstar: a fully parametric physical model for galaxy assembly history
    Alarcon, A., Hearin, A. P., Becker, M. R., & Chaves-Montero, J. (2023). MNRAS, 518, 562.
  67. Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. I. Construction of CMB lensing maps and modeling choices
    Omori, Y., Baxter, E. J., Chang, C., et al. (2023). PhRvD, 107, 023529.
  68. Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. III. Combined cosmological constraints
    Abbott, T. M. C., Aguena, M., Alarcon, A., et al. (2023). PhRvD, 107, 023531.

Calendar Year 2022

  1. Extending empirical constraints on the SZ-mass scaling relation to higher redshifts via HST weak lensing measurements of nine clusters from the SPT-SZ survey at z ≳ 1
    Zohren, H., Schrabback, T., Bocquet, S., et al. (2022). A&A, 668, A18.
  2. COOL-LAMPS. II. Characterizing the Size and Star Formation History of a Bright Strongly Lensed Early-type Galaxy at Redshift 1.02
    Sukay, E., Khullar, G., Gladders, M. D., et al. (2022). ApJ, 940, 42.
  3. Optical Leakage Mitigation in Ortho-Mode Transducer Detectors for Microwave Applications
    Gualtieri, R., Barry, P. S., Cecil, T., et al. (2022). JLTP, 209, 314.
  4. Candidate cosmic filament in the GJ526 field, mapped with the NIKA2 camera
    Lestrade, J.-F., Désert, F.-X., Lagache, G., et al. (2022). A&A, 667, A23.
  5. Modeling Redshift-space Clustering with Abundance Matching
    DeRose, J., Becker, M. R., & Wechsler, R. H. (2022). ApJ, 940, 13.
  6. In-Flight Gain Monitoring of SPIDER’s Transition-Edge Sensor Arrays
    Filippini, J. P., Gambrel, A. E., Rahlin, A. S., et al. (2022). JLTP, 209, 649.
  7. Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MAGLIM lens sample
    Porredon, A., Crocce, M., Elvin-Poole, J., et al. (2022). PhRvD, 106, 103530.
  8. Calibration of Transition-edge Sensor (TES) Bolometer Arrays with Application to CLASS
    Appel, J. W., Bennett, C. L., Brewer, M. K., et al. (2022). ApJS, 262, 52.
  9. Dark Energy Survey Year 3 results: Cosmology with moments of weak lensing mass maps
    Gatti, M., Jain, B., Chang, C., et al. (2022). PhRvD, 106, 083509.
  10. The outer stellar mass of massive galaxies: a simple tracer of halo mass with scatter comparable to richness and reduced projection effects
    Huang, S., Leauthaud, A., Bradshaw, C., et al. (2022). MNRAS, 515, 4722.
  11. The Future of High Energy Physics Software and Computing
    Elvira, V. D., Gottlieb, S., Gutsche, O., et al. (2022). arXiv, arXiv:2210.05822.
  12. Snowmass Computational Frontier: Topical Group Report on Experimental Algorithm Parallelization
    Cerati, G., Heitmann, K., Hopkins, W., et al. (2022). arXiv, arXiv:2209.07356.
  13. Why are we still using 3D masses for cluster cosmology?
    Debackere, S. N. B., Hoekstra, H., Schaye, J., Heitmann, K., & Habib, S. (2022). MNRAS, 515, 3383.
  14. Asteroid Measurements at Millimeter Wavelengths with the South Pole Telescope
    Chichura, P. M., Foster, A., Patel, C., et al. (2022). ApJ, 936, 173.
  15. Dark energy survey year 3 results: cosmological constraints from the analysis of cosmic shear in harmonic space
    Doux, C., Jain, B., Zeurcher, D., et al. (2022). MNRAS, 515, 1942.
  16. Forecasting ground-based sensitivity to the Rayleigh scattering of the CMB in the presence of astrophysical foregrounds
    Dibert, K. R., Anderson, A. J., Bender, A. N., et al. (2022). PhRvD, 106, 063502.
  17. Dark Energy Survey Year 3 results: Imprints of cosmic voids and superclusters in the Planck CMB lensing map
    Kovács, A., Vielzeuf, P., Ferrero, I., et al. (2022). MNRAS, 515, 4417.
  18. Report of the Topical Group on Dark Energy and Cosmic Acceleration: Complementarity of Probes and New Facilities for Snowmass 2021
    Flaugher, B., Miranda, V., Schlegel, D. J., et al. (2022). arXiv, arXiv:2209.08654.
  19. Machine learning synthetic spectra for probabilistic redshift estimation: SYTH-Z
    Ramachandra, N., Chaves-Montero, J., Alarcon, A., et al. (2022). MNRAS, 515, 1927.
  20. SNIa Cosmology Analysis Results from Simulated LSST Images: From Difference Imaging to Constraints on Dark Energy
    Sánchez, B. O., Kessler, R., Scolnic, D., et al. (2022). ApJ, 934, 96.
  21. Searching for axionlike time-dependent cosmic birefringence with data from SPT-3G
    Ferguson, K. R., Anderson, A. J., Whitehorn, N., et al. (2022). PhRvD, 106, 042011.
  22. Synthesizing Stellar Populations in South Pole Telescope Galaxy Clusters. I. Ages of Quiescent Member Galaxies at 0.3 < z < 1.4
    Khullar, G., Bayliss, M. B., Gladders, M. D., et al. (2022). ApJ, 934, 177.
  23. Shocks in the stacked Sunyaev-Zel’dovich profiles of clusters II: Measurements from SPT-SZ + Planck Compton-y map
    Anbajagane, D., Chang, C., Jain, B., et al. (2022). MNRAS, 514, 1645.
  24. Interpretable Uncertainty Quantification in AI for HEP
    Chen, T. Y., Dey, B., Ghosh, A., et al. (2022). arXiv, arXiv:2208.03284.
  25. Combining Planck and SPT Cluster Catalogs: Cosmological Analysis and Impact on the Planck Scaling Relation Calibration
    Salvati, L., Saro, A., Bocquet, S., et al. (2022). ApJ, 934, 129.
  26. Dark Energy Survey year 3 results: Constraints on cosmological parameters and galaxy-bias models from galaxy clustering and galaxy-galaxy lensing using the redMaGiC sample
    Pandey, S., Krause, E., DeRose, J., et al. (2022). PhRvD, 106, 043520.
  27. Cross-correlation of Dark Energy Survey Year 3 lensing data with ACT and Planck thermal Sunyaev-Zel’dovich effect observations. II. Modeling and constraints on halo pressure profiles
    Pandey, S., Gatti, M., Baxter, E., et al. (2022). PhRvD, 105, 123526.
  28. Improving Cosmological Constraints from Galaxy Cluster Number Counts with CMB-cluster-lensing Data: Results from the SPT-SZ Survey and Forecasts for the Future
    Chaubal, P. S., Reichardt, C. L., Gupta, N., et al. (2022). ApJ, 931, 139.
  29. Dark Energy Survey Year 3 results: Cosmology from combined galaxy clustering and lensing validation on cosmological simulations
    DeRose, J., Wechsler, R. H., Becker, M. R., et al. (2022). PhRvD, 105, 123520.
  30. Cross-correlation of Dark Energy Survey Year 3 lensing data with ACT and Planck thermal Sunyaev-Zel’dovich effect observations. I. Measurements, systematics tests, and feedback model constraints
    Gatti, M., Pandey, S., Baxter, E., et al. (2022). PhRvD, 105, 123525.
  31. ADDGALS: Simulated Sky Catalogs for Wide Field Galaxy Surveys
    Wechsler, R. H., DeRose, J., Busha, M. T., et al. (2022). ApJ, 931, 145.
  32. The Simons Observatory: A large-diameter truss for a refracting telescope cooled to 1 K
    Crowley, K. D., Dow, P., Shroyer, J. E., et al. (2022). RScI, 93, 055106.
  33. Cosmo-Paleontology: Statistics of Fossil Groups in a Gravity-Only Simulation
    Coissart, A., Buehlmann, M., Kovacs, E., et al. (2022). OJAp, 5, 7.
  34. Dark Energy Survey Year 3 Results: Three-point shear correlations and mass aperture moments
    Secco, L. F., Jarvis, M., Jain, B., et al. (2022). PhRvD, 105, 103537.
  35. A Simulation-based Method for Correcting Mode Coupling in CMB Angular Power Spectra
    Leung, J. S.-Y., Hartley, J., Nagy, J. M., et al. (2022). ApJ, 928, 109.
  36. Dark Energy Survey Year 3 results: Exploiting small-scale information with lensing shear ratios
    Sánchez, C., Prat, J., Zacharegkas, G., et al. (2022). PhRvD, 105, 083529.
  37. Snowmass2021 Cosmic Frontier White Paper: Enabling Flagship Dark Energy Experiments to Reach their Full Potential
    Blazek, J. A., Clowe, D., Collett, T. E., et al. (2022). arXiv, arXiv:2204.01992.
  38. Dark energy survey year 3 results: Cosmology with peaks using an emulator approach
    Zürcher, D., Fluri, J., Sgier, R., et al. (2022). MNRAS, 511, 2075.
  39. Massive merging cluster PSZ2G091 as seen by the NIKA2 camera
    Artis, E., Adam, R., Ade, P., et al. (2022). arXiv, arXiv:2204.14052.
  40. Dark energy survey year 3 results: High-precision measurement and modeling of galaxy-galaxy lensing
    Prat, J., Blazek, J., Sánchez, C., et al. (2022). PhRvD, 105, 083528.
  41. Snowmass2021 Computational Frontier White Paper: Cosmological Simulations and Modeling
    Alvarez, M. A., Banerjee, A., Birrer, S., et al. (2022). arXiv, arXiv:2203.07347.
  42. Snowmass 2021 CMB-S4 White Paper
    Abazajian, K., Abdulghafour, A., Addison, G. E., et al. (2022). arXiv, arXiv:2203.08024.
  43. Snowmass2021 Cosmic Frontier White Paper: High Density Galaxy Clustering in the Regime of Cosmic Acceleration
    Dawson, K., Hearin, A., Heitmann, K., et al. (2022). arXiv, arXiv:2203.07291.
  44. Snowmass2021 Cosmic Frontier: Cosmic Microwave Background Measurements White Paper
    Chang, C. L., Huffenberger, K. M., Benson, B. A., et al. (2022). arXiv, arXiv:2203.07638.
  45. Snowmass2021 Cosmic Frontier White Paper: Rubin Observatory after LSST
    Blum, B., Digel, S. W., Drlica-Wagner, A., et al. (2022). arXiv, arXiv:2203.07220.
  46. Farpoint: A High-resolution Cosmology Simulation at the Gigaparsec Scale
    Frontiere, N., Heitmann, K., Rangel, E., et al. (2022). ApJS, 259, 15.
  47. Snowmass2021: Opportunities from Cross-survey Analyses of Static Probes
    Baxter, E. J., Chang, C., Hearin, A., et al. (2022). arXiv, arXiv:2203.06795.
  48. A Constraint on Primordial B-modes from the First Flight of the SPIDER Balloon-borne Telescope
    Ade, P. A. R., Amiri, M., Benton, S. J., et al. (2022). ApJ, 927, 174.
  49. The Design and Integrated Performance of SPT-3G
    Sobrin, J. A., Anderson, A. J., Bender, A. N., et al. (2022). ApJS, 258, 42.
  50. Cosmological constraints from gas mass fractions of massive, relaxed galaxy clusters
    Mantz, A. B., Morris, R. G., Allen, S. W., et al. (2022). MNRAS, 510, 131.
  51. Differentiable Predictions for Large Scale Structure with SHAMNet
    Hearin, A. P., Ramachandra, N., Becker, M. R., & DeRose, J. (2022). OJAp, 5, 3.
  52. Four-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: On-sky Receiver Performance at 40, 90, 150, and 220 GHz Frequency Bands
    Dahal, S., Appel, J. W., Datta, R., et al. (2022). ApJ, 926, 33.
  53. CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
    Abazajian, K., Addison, G. E., Adshead, P., et al. (2022). ApJ, 926, 54.
  54. Toward Accurate Modeling of Galaxy Clustering on Small Scales: Constraining the Galaxy-halo Connection with Optimal Statistics
    Szewciw, A. O., Beltz-Mohrmann, G. D., Berlind, A. A., & Sinha, M. (2022). ApJ, 926, 15.
  55. Synthetic galaxy clusters and observations based on Dark Energy Survey Year 3 Data
    Varga, T. N., Gruen, D., Seitz, S., et al. (2022). MNRAS, 509, 4865.
  56. CMB/kSZ and Compton-y Maps from 2500 deg2 of SPT-SZ and Planck Survey Data
    Bleem, L. E., Crawford, T. M., Ansarinejad, B., et al. (2022). ApJS, 258, 36.
  57. Dark Energy Survey Year 3 Results: Measuring the Survey Transfer Function with Balrog
    Everett, S., Yanny, B., Kuropatkin, N., et al. (2022). ApJS, 258, 15.
  58. Validating Synthetic Galaxy Catalogs for Dark Energy Science in the LSST Era
    Kovacs, E., Mao, Y.-Y., Aguena, M., et al. (2022). OJAp, 5, 1.
  59. Dark Energy Survey Y3 results: blending shear and redshift biases in image simulations
    MacCrann, N., Becker, M. R., McCullough, J., et al. (2022). MNRAS, 509, 3371.
  60. Dark Energy Survey Year 3 results: galaxy-halo connection from galaxy-galaxy lensing
    Zacharegkas, G., Chang, C., Prat, J., et al. (2022). MNRAS, 509, 3119.
  61. Dark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to data calibration
    Amon, A., Gruen, D., Troxel, M. A., et al. (2022). PhRvD, 105, 023514.
  62. Dark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to modeling uncertainty
    Secco, L. F., Samuroff, S., Krause, E., et al. (2022). PhRvD, 105, 023515.
  63. Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing
    Abbott, T. M. C., Aguena, M., Alarcon, A., et al. (2022). PhRvD, 105, 023520.
  64. Performance and characterization of the SPT-3G digital frequency-domain multiplexed readout system using an improved noise and crosstalk model
    Montgomery, J., Ade, P. A. R., Ahmed, Z., et al. (2022). JATIS, 8, 014001.

Calendar Year 2021

  1. The Design and Integrated Performance of SPT-3G
    J. A. Sobrin, A. J. Anderson, A. N. Bender, B. A. Benson et al. (with L. Bleem, C. Chang). Submitted to ApJS, arXiv:2106.11202
  2. Constraining f(R) Gravity with a k-cut Cosmic Shear Analysis of the Hyper Suprime-Cam First-Year Data
    Vazsonyi, L., Taylor, P. L., Valogiannis, G., Ramachandra, N. S., Ferté, A., and Rhodes, J., arXiv: 2107.10277, Submitted to PRD
  3. Cross-correlation of DES Y3 lensing and ACT/ Planck  thermal Sunyaev Zel’dovich Effect I: Measurements, systematics tests, and feedback model constraints.  Gatti, M. ; Pandey, S. ; Baxter, E. ; et al (with A. Alarcon and M. Becker).
    arXiv:2108.01600.
  4. Cross-correlation of DES Y3 lensing and ACT/ Planck  thermal Sunyaev Zel’dovich Effect II: Modeling and constraints on halo pressure profiles
    Pandey, S. ; Gatti, M. ; Baxter, E. ; et al (with A. Alarcon and M. Becker)
    arXiv:2108.01601.
  5. Beyond Mass: Detecting Secondary Halo Properties with Galaxy-Galaxy Lensing
    Xhakaj, Enia; Leauthaud, Alexie ; Lange, Johannes ; Hearin, Andrew ; Diemer, Benedikt ; Dalal, Neal.
    Submitted to MNRAS; arXiv: https://arxiv.org/abs/2106.06656.
  6. The Last Journey. II. SMACC – Subhalo Mass-loss Analysis using Core Catalogs
    Sultan, I., Frontiere, N., Habib, S., Heitmann, K., Kovacs, E., Larsen, P., Rangel, E. 2021. The Astrophysical Journal, 913, 109.  arXiv: https://arxiv.org/abs/2012.09262.  DOI: 10.3847/1538-4357/abf4fe.
  7. Dark Energy Survey Year 3 results: Galaxy-halo connection from galaxy-galaxy lensing
    Zacharegkas, G. ; Chang, C. ; Prat, J. ; et al (with A. Alarcon and M. Becker)
    arXiv:2106.08438.
  8. Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing
    DES Collaboration ; et al (with A. Alarcon and M. Becker)
    arXiv:2105.13549.
  9. Dark Energy Survey Year 3 results: cosmology from combined galaxy clustering and lensing — validation on cosmological simulations.  DeRose, J. ; Wechsler, R. H. ; Becker, M. R.; et al (with A. Alarcon).  arXiv:2105.13547.
  10. Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample
    Porredon, A. ; Crocce, M. ; Elvin-Poole, J. ; et al (with A. Alarcon and M. Becker)
    arXiv:2105.13546.
  11. Dark Energy Survey Year 3 Results: Constraints on cosmological parameters and galaxy bias models from galaxy clustering and galaxy-galaxy lensing using the redMaGiC sample
    Pandey, S. ; Krause, E. ; DeRose, J. ; et al (with A. Alarcon and M. Becker)
    arXiv:2105.13545.
  12. Dark Energy Survey Year 3 Results: Cosmology from Cosmic Shear and Robustness to Modeling Uncertainty
    Secco, L. F. ; Samuroff, S. ; Krause, E. ; et al (with A. Alarcon and M. Becker)
    arXiv:2105.13544.
  13. Dark Energy Survey Year 3 Results: Cosmology from Cosmic Shear and Robustness to Data Calibration
    Amon, A. ; Gruen, D. ; Troxel, M. A. ; et al (with A. Alarcon and M. Becker)
    arXiv:2105.13543.
  14. Dark Energy Survey Year 3 Results: Exploiting small-scale information with lensing shear ratios
    Sánchez, C. ; Prat, J. ; Zacharegkas, G. ; et al (with A. Alarcon and M. Becker)
    Submitted to PRD. arXiv:2105.13542.
  15. Dark Energy Survey Year 3 Results: High-precision measurement and modeling of galaxy-galaxy lensing
    Prat, J. ; Blazek, J. ; Sánchez, C. ; et al (with A. Alarcon and M. Becker)
    Submitted to PRD. arXiv:2105.13541.
  16. Dark Energy Survey Year 3 results: Curved-sky weak lensing mass map reconstruction
    Jeffrey, N. ; Gatti, M. ; Chang, C. ; et al (with A. Alarcon and M. Becker)
    Monthly Notices of the Royal Astronomical Society, Volume 505, Issue 3, pp.4626-4645 (2021). DOI:10.1093/mnras/stab1495. arXiv:2105.13539.
  17. The mass and galaxy distribution around SZ-selected clusters
    Shin, T. ; Jain, B. ; Adhikari, S. ; et al (with A. Alarcon and M. Becker)
    Submitted to MNRAS. arXiv:2105.05914.
  18. A Differentiable Model of the Assembly of Individual and Populations of Dark Matter Halos.
    Hearin, Andrew P. ; Chaves-Montero, Jonás; Becker, Matthew R. ; Alarcon, Alex
    Open Journal of Astrophysics (2021). DOI:10.21105/astro.2105.05859. arXiv:2105.05859.
  19. Dark energy survey internal consistency tests of the joint cosmological probes analysis with posterior predictive distributions.  C. Doux, et al. (with A. Alarcon). MNRAS Volume 503, Issue 2, May 2021, Pages 2688–2705. DOI: 10.1093/mnras/stab526; arXiv: https://arxiv.org/abs/2011.03410.
  20. The PAU Survey: narrow-band photometric redshifts using Gaussian processes
    John Y H Soo, et al. (with A. Alarcon).  MNRAS Volume 503, Issue 3, May 2021, Pages 4118–4135. arXiv:2101.03723
  21. A machine learning approach to galaxy properties: joint redshift-stellar mass probability distributions with Random Forest
    Mucesh, S. et al. (with A. Alarcon). MNRAS Volume 502, Issue 2, April 2021. arXiv:2012.05928
  22. Core Mass Estimates in Strong Lensing Galaxy Clusters: a Comparison Between Masses Obtained from Detailed Lens Models, Single-Halo Lens Models, and Einstein Radii.
    J. D. Remolina González et al. (with L. Bleem).  arXiv:2104.03883, ApJ accepted.
  23. Dark energy survey year 3 results: weak lensing shape catalogue.
    Gatti, M. ; Sheldon, E. ; Amon, A. ; Becker, M. et al. Monthly Notices of the Royal Astronomical Society, Volume 504, Issue 3, 2021. arXiv:2011.03408
  24. Redshift Calibration of the Weak Lensing Source Galaxies.
    Myles, J.; Alarcon, A.; Amon, A.; Sánchez, C.; et. al. (2021). DOI:10.1093/mnras/stab1515 arXiv:2012.08566
  25. Anomaly Detection in Astronomical Images with Generative Adversarial Networks.
    Kate Storey-Fisher, Marc Huertas-Company, Nesar Ramachandra, Francois Lanusse, Alexie Leauthaud, Yifei Luo, Song Huang. arXiv:2012.08082, Accepted to the 2020 NeurIPS Machine Learning and the Physical Science.
  26. Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning.
    Kai Fukami, Romit Maulik, Nesar Ramachandra, Koji Fukagata, Kunihiko TairaarXiv:2101.00554, submitted to the Proceedings of the National Academy of Sciences.
  27. Exploring the contamination of the DES-Y1 Cluster Sample with SPT-SZ selected clusters.
    Grandis et al, 2021 (with L. Bleem). DOI:10.1093/mnras/stab869, arXiv:2101.04984
  28. Measurements of the E-Mode Polarization and Temperature-E-Mode Correlation of the CMB from SPT-3G 2018 Data.
    Dutcher et al, (with L. Bleem). Physical Review D, Volume 104, Issue 2, article id.022003, 2021. arXiv:2101.01684
  29. DESC DC2 Data Release Note
    LSST DESC Collaboration: arXiv:2101.04855
  30. Mass calibration of distant SPT galaxy clusters through expanded weak lensing follow-up observations with HST, VLT & Gemini-South.
    T. Schrabback, S. Bocquet, M. Sommer, H. Zohren, J. L. van den Busch, B. Hernández-Martín, H. Hoekstra, S. F. Raihan, M. Schirmer, D. Applegate, M. Bayliss, B. A. Benson, L. E. Bleem, J. P. Dietrich, B. Floyd, S. Hilbert, J. Hlavacek-Larrondo, M. McDonald, A. Saro, A. A. Stark, N. Weissgerber.  DOI:10.1093/mnras/stab1386 arXiv:2009.07591
  31. The Last Journey. I. An Extreme-Scale Simulation on the Mira Supercomputer
    K. Heitmann, N. Frontiere, E. Rangel, P. Larsen, A. Pope, I. Sultan, T. Uram, S. Habib, H. Finkel, D. Korytov, E. Kovacs, S. Rizzi, and J. Insley
    The Astrophysical Journal Supplement Series, 252, 2 (2021). DOI:10.3847/1538-4365/abcc67. arXiv:2006.01697.
  32. Constraints on ACDM Extensions from the SPT-3G 2018 EE and TE Power Spectra.  L. Balkenhol, D. Dutcher, P. A. R. Ade, Z. Ahmed, E. Anderes, A. J. Anderson, M. Archipley, J. S. Avva, K. Aylor, P. S. Barry, R. Basu Thakur, K. Benabed, A. N. Bender, L.E. Bleem, et al. arXiv: 2103.13618.
  33. Detection of Galactic and Extragalactic Millimeter-Wavelength Transient Sources with SPT-3G.  S. Guns, A. Foster, C. Daley, A. Rahlin, N. Whitehorn, P. A. R. Ade, Z. Ahmed, E. Anderes, A. J. Anderson, M. Archipley, J. S. Avva, K. Aylor, L. Balkenhol, P. S. Barry, R. Basu Thakur, K. Benabed, A. N. Bender, B. A. Benson, F. Bianchini, L. E. Bleem, et al.  arXiv: 2103.06166.
  34. Performance and characterization of the SPT-3G digital frequency-domain multiplexed readout system using an improved noise and crosstalk model.  J. Montgomery, P.A.R. Ade, Z. Ahmed, E. Anderes, A.N. Bender, L.E. Bleem, et al.  arXiv: https://arxiv.org/abs/2103.16017.
  35. Core Mass Estimates in Strong Lensing Galaxy Clusters Using a Single-Halo Lens Model
    J. D. Remolina Gonzalez, K. Sharon, N. Li, G. Mahler, L. E. Bleem, M. Gladders, and A. Niemiec
    arXiv:2102.06351.
  36. Main Sequence Scatter is Real: The Joint Dependence of Galaxy Clustering on Star Formation and Stellar Mass
    A.M. Berti, A.L. Coil, A.P. Hearin, P.S. Behroozi
    The Astronomical Journal, 161, 1 (2021). DOI:10.3847/1538-3881/abcc6a. arXiv:2009.02405.
  37. Correlations between Triaxial Shapes and Formation History of Dark Matter Haloes
    E.T. Lau, A.P. Hearin, D. Nagai, N. Cappelluti
    MNRAS, 500, 1 (2021). DOI:10.1093/mnras/staa3313. arXiv:2006.09420.
  38. Main-sequence Scatter is Real: The Joint Dependence of Galaxy Clustering on Star Formation and Stellar MassAngela M. Berti, Alison L. Coil, Andrew P. Hearin, Peter S. Behroozi.
    Publciation Details. DOI:2009.02405v1. arXiv:10.3847/1538-3881/abcc6a.
  39. Combination of cluster number counts and two-point correlations: Validation on Mock Dark Energy Survey. C. To, E. Krause, E. Rozo, H. Wu, D. Gruen, J. DeRose, E. S. Rykoff, R. H. Wechsler, M. R. Becker, et al.  arXiv: 2008:10757.
    MNRAS 502, 3 (2021). DOI:10.1093/mnras/stab239. arXiv:2008.10757.
  40. Dark Energy Survey Year 1 Results: Constraining Baryonic Physics in the Universe
    H.-J. Huang, T. Eifler, R. Mandelbaum, et al. (with M. Becker)
    MNRAS (2021). DOI:10.1093/mnras/stab357. arXiv:2007.15026.
  41. The PAU Survey: An improved photo-z sample in the COSMOS field
    A. Alarcon, E. Gaztanaga, M. Eriksen, et al.
    MNRAS 501, 4 (2021). DOI:10.1093/mnras/staa3659. arXiv:2007.11132.
  42. COOL-LAMPS I. An Extraordinarily Bright Lensed Galaxy at Redshift 5.04
    G. Khullar, K. Gozman, J.J. Lin, et al. (with L.E. Bleem).  arXiv: https://arxiv.org/abs/2011.06601.
    The Astrophysical Journal, 906, 2 (2021). DOI:10.3847/1538-4357/abcb86.
  43. CMB/kSZ and Compton-y Maps from 2500 square degrees of SPT-SZ and Planck Survey Data
    L. E. Bleem, T. M. Crawford, B. Ansarinejad, B. A. Benson, S. Bocquet, J. E. Carlstrom, C. L. Chang, R. Chown, A. T. Crites, T. de Haan,M. A. Dobbs, W. B. Everett, E. M. George, R. Gualtieri,et al.
    Publciation Details. arXiv:arXiv.2102.05033.
  44. Stability of Cool Cores During Galaxy Cluster Growth: A Joint Chandra/SPT Analysis of 67 Galaxy Clusters Along a Common Evolutionary Track Spanning 9 Gyr F. Ruppin, M. McDonald, L. E. Bleem, S. W. Allen, B. A. Benson, M. Calzadilla, G. Khullar, and B. Floyd.  arXiv:2012.14669v1.  DOI: http://10.3847/1538-4357/ac0bba
  45. Latent-space time evolution of non-intrusive reduced-order models using Gaussian process emulation
    R. Maulik, T. Botsas, N. Ramachandra, M. Lachlan, I. Pan, Physica D: Nonlinear Phenomena, Volume 416, article id. 132797. 2021. arXiv:2007.12167
  46. The LSST DESC DC2 Simulated Sky Survey  LSST Dark Energy Collaboration. Bela Abolfathi, Katrin Heitmann, et al.  The Astrophysical Journal Supplement Series, Volume 253, Issue 1, id.31, 2021. arXiv: https://arxiv.org/abs/2010.05926. DOI: http://10.3847/1538-4365/abd62c.
  47.  A Demonstration of Improved Constraints on Primordial Gravitational Waves with Delensing.
    BICEP/KECK and SPT collaborations (with L. Bleem). Physical Review D, Volume 103, Issue 2, article id.022004, 2021. arXiv:https://arxiv.org/abs/2011.08163 . DIO: http://10.1103/PhysRevD.103.022004.
  48. Dark Energy Survey Year 3 Results: Photometric Data Set for Cosmology
    Sevilla-Noarbe, Becker, M.R., et al. The Astrophysical Journal Supplement Series, Volume 254, Issue 2, id.24, 2021. DOI: http://10.3847/1538-4365/abeb66.  arXiv: https://arxiv.org/abs/2011.03407
  49. Stellar and Weak Lensing Profiles of Massive Galaxies in the Hyper-Suprime Cam Survey and in Hydrodynamic Simulations.  F. Ardila, S. Haung, A. Leauthaud, B. Diemer, A. Hearin, et al.  DOI: 10.1093/mnras/staa3215.  arXiv: https://arxiv.org/abs/2010.00123.
  50. The PAU Survey: Photometric redshifts using transfers learning from simulations.  M. Eriksen, A. Alarcon , L. Cabayol, J. Carretero, et al. DOI: 10.1092/mnras/staa2265.  arXiv://arxiv.org/abs/2004.07979.
  51. Joint galaxy-galaxy lensing and clustering constraints on galaxy formation.  Malin Renneby, Bruno M. B. Henriques, Stefan Hilbert, Dylan Nelson, et al.  arXiv: https://arxiv.org/abs/2007.01889.  DIO:  http://10.1093/mnras/staa2675.
  52. Optical leakage mitigation in ortho-mode transducer detectors for microwave applications.  R. Gualtieri, P. Barry, T. Cecil, A.N. Bender, C.L. Chang, J.C. Hood, M. Lisovenko, V. Yefremenko.  Pending acceptance.
  53. Dark Energy Survey Year 3 results: Cosmology with peaks using an emulator approach. D. Zürcher, J. Fluri, R. Sgier, M. Becker, A. Alarcon, et al.  arXiv: https://arxiv.org/abs/2110.10135.
  54. Dark Energy Survey Year 3 results: cosmology with moments of weak lensing mass maps.   M. Gatti, B. Jain, C. Chang, M. Raveri, M. Becker, A. Alarcon, et al. ArXiv: https://arxiv.org/abs/2110.10141.
  55. SPHEREx: NASA’s near-infrared spectrophotometric all-sky survey.  B.P. Crill, M.W. Werner, R. Akeson, M.L.N. Ashby, L. Bleem, et al.  DOI: https://doi.org/10.1117/12.2567224.
  56. Combining Planck and SPT cluster catalogs: cosmological analysis and impact on Planck scaling relation calibration.  L. Salvati, A. Saro, S. Bocquet, M Costanzi, B. Ansarinejad, B.A. Benson, L.E. Bleem, C.L. Chang, et al. arXiv: https://arxiv.org/abs/2112.03606.
  57. Illuminating Galaxy Evolution at Cosmic Noon with ISCEA: the Infrared Satellite for Cosmic Evolution Astrophysics.  Yun Wang, Lee Armus, Andrew Benson, Emanuele Daddi, Andrease Faisst, Anthony Gonzalez, Casey Papovich, Zoran Ninkov, Massimo Robberto, Randall J. Rose, Thomas Rose, Claudia Scarlata, S.A. Stanford, Todd Veach, Zhongxu Zhai, Brandford Benson, L.E. Bleem, et al.  arXiv: https://arxiv.org/abs/2112.02387
  58. Cosmological Ceonstraints from Gas Mass Fractions of Massive, Relaxed Galaxy Clusters.  Adam B. Mantz, R. Glenn Morris, Steven W. Allen, Rebecca E. A. Canning, Lucie Baumont, Bradford Benson, Lindsey E. Bleem, et al.  arXiv: https://arxiv.org/abs/2111.09343
  59. Synthesizing Stellar Populations in South Ple Telescope Galaxy Clusters: I. Ages of Quiescent Member Galaxies at 0.30<z<1.4. Gourav Khullar, Matthew B. Bayliss ,  Michael D. Gladders , Keunho J. Kim, Michael S Calzadilla , Veronica Strazzullo, Lindsey E. Bleem, et al. arXiv: https://arxiv.org/abs/2111.09318
  60. Improving cosmological constraints from galaxy cluster number counts with CMB-cluster-lensing data: Results from the SPTSZ survey and forecasts for the future.   P.S. Chaubal, C.L. Reichardt, N. Gupta, B. Ansarinejad, K. Aylor, L. Balkenhol, E.J. Baxter, F. Bianchini, B.A. Benson, L.E. Bleem, J.E. Carlstrom, C.L. Chang, et al.  arXiv: https://arxiv.org/abs/211
  61. Shocks in the Stacked Sunyaey-Zel’dovich Profiles of Clusters II: Measurements from SPT-SZ+ Planck Compton-y Map.  D. Anbajagane, C. Chang, B. Jain, S. Adhikari, E.J. Baxter, B.A. Benson, L.E. Bleem, et al.  arXiv: https://arxiv.org/abs/2111.04778
  62. Validating Synthetic Galaxy Catalogs for Dark Energy Science in the LSST Era. Eve Kovacs, Yao-Yuan Mao, Michel Aguena, Anita Bahmanyar, James Butler, (Patricia Larsen, Lindsey Bleem, Katrin Heitmann, Danila Korytov), et al.  https://arxiv.org/abs/2110.03769.
  63. The History of Metal Enrichment Traced by X-ray Observations of High Redshift Galaxy Clusters.  Anthony M. Flores, Adam B. Mantz, Steven W. Allen, R. Glenn Morris, Rebecca E. A. Canning, Lindsey E. Bleem, Michael S. Calzadilla, et al.  arXiv: https://arxiv.org/abs/2108.12051.
  64. Machine learning synthetic spectra for probabilistic redshift estimation: SYTH-Z.  N. Ramachandra, J. Chavs-Montero, A. Alarcon, A. Fadikar, S. Habib, K. Heitmann. arXiv: https://arXiv.2111.12118.  

Calendar Year 2020

  1. DES Y3 results: Blending shear and redshift biases in image simulations.
    MacCrann, Becker, et al.  arXiv: 2012.08567.
  2. Dark Energy Survey Year 3 Results: Measuring the Survey Transfer Function with Balrog.
    S. Everett, A. Alarcon, M.R. Becker, et al. arXiv:2012.12825.
  3. Efficient Mass Estimate at the Core of Strong Lensing Galaxy Clusters Using the Einstein Radius
    J. D. Remolina González, K. Sharon, B. Reed, N. Li, G. Mahler, L. E. Bleem, M. Gladders, A. Niemiec, A. Acebron, H. Child.  DOI:10.3847/1538-4357/abb2a1.  arXiv: 2008.10676
  4. The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: exploring the Halo Occupation Distribution model of Emission Line Galaxies
    Avila, S., et al (with S. Habib, K. Heitmann). Monthly Notices of the Royal Astronomical Society, Volume 499, Issue 4, 2020.  arXiv. 2007.09012
  5. Optimal CMB Lensing Reconstruction and Parameter Estimation with SPTpol Data
    K. M. Millea, C. M. Daley, T-L. Chou, L.E. Bleem, et al.  arXiv:2012.01709.
  6. Physical Correlations of the Scatter between Galaxy Mass, Stellar Content, and Halo Mass
    Christopher Bradshaw, Alexie Leauthaud, Andrew Hearin, Song Huang, Peter Behroozi.
    Publciation Details. DOI:1905.09353v1. arXiv:10.1093/mnras/staa081.
  7. The Universe at z > 10: predictions for JWST from the UNIVERSEMACHINE DR1
    Peter Behroozi, Charlie Conroy, Risa H. Wechsler, Andrew Hearin, et al.
    Publciation Details. arXiv:2007.04988.
  8. On the possibility of Baryon Acoustic Oscillation measurements at redshift z>7.6 with the Roman Space Telescope.  S. Satpathy, Z. An, R.A.C. Croft, T. Di Matteo, A. Tenneti, Y. Feng, K. Heitmann, G. Rossi
    MNRAS, 498, 4, (2020). DOI:10.1093/mnras/staa2732. arXiv:2001.05183.
  9. The Mira-Titan Universe. III. Emulation of the Halo Mass Function
    S. Bocquet, K. Heitmann, S. Habib, E. Lawrence, T. Uram, N. Frontiere, A. Pope, H. Finkel
    The Astrophysical Journal, 901, 1, (2020). DOI:10.3847/1538-4357/abac5c. arXiv:2003.12116.
  10. On the road to percent accuracy III: non-linear reaction of the matter power spectrum to massive neutrinos.  M. Cataneo, J.D. Emberson, D. Inman, J. Harnois-Deraps, and C. Heymans
    MNRAS, 491, 3 (2020). DOI:10.1093/mnras/stz3189. arXiv:1909.02561.
  11. Generating synthetic cosmological data with GalSampler
    A. Hearin, D. Korytov, E. Kovacs, A. Benson, H. Aung, C. Bradshaw, D. Campbell
    MNRAS, 495, 4 (2020). DOI:10.1093/mnras/staa1495. arXiv:1909.07340.
  12. The Universe at z>10: Predictions for JWST from the UniverseMachine DR1
    P. Behroozi, C. Conroy, R.H. Wechsler, A. Hearin et al.
    MNRAS, 499, 4 (2020). DOI:10.1093/mnras/staa3164. arXiv:2007.04988.
  13. Report from the Tri-Agency Cosmological Simulation Task Force
    N. Battaglia, A. Benson, T. Eifler, A. Hearin, K. Heitmann, et al.
    Delivered to NASA, NSF, and DOE in Dec 2018. arXiv:2005.07281.
  14. Physical Correlations of the Scatter between Galaxy Mass, Stellar Content, and Halo Mass
    C. Bradshaw, A. Leauthaud, A. Hearin, S. Huang, P. Behroozi
    MNRAS, 493, 1 (2020). DOI:10.1093/mnras/staa081. arXiv:1905.09353.
  15. Weak Lensing Reveals a Tight Connection Between Dark Matter Halo Mass and the Distribution of Stellar Mass in Massive Galaxies
    S. Huang, A. Leauthaud, A. Hearin, et al.
    MNRAS 492, 3, (2020). DOI:10.1093/mnras/stz3314. arXiv:1811.01139.
  16. CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
    The CMB-S4 Collaboration (with L. Bleem, S. Habib, K. Heitmann)
    arXiv:2008.12619.
  17. Propagating sample variance uncertainties in redshift calibration: simulations, theory and application to the COSMOS2015 data
    C. Sanchez, M. Raveri, A. Alarcon, G.M. Bernstein
    MNRAS, 498, 2 (2020). DOI:10.1093/mnras/staa2542. arXiv:2004.09542.
  18. Beyond the Hubble Sequence — Exploring Galaxy Morphology with Unsupervised Machine Learning
    T.-Y. Cheng, M. Huertas-Company, C.J. Conselice, A. Aragon-Salamanca, B.E. Robertson, N. Ramachandra
    Submitted to MNRAS. arXiv:2009.11932.
  19. Peculiar Velocity Estimation from Kinetic SZ Effect using Deep Neural Networks
    Y. Wang, N. Ramachandra, E.M. Salazar-Canizales, et al.
    Submitted to MNRAS. arXiv:2010.03762.
  20. Constraining the masses of high-redshift clusters with weak lensing: Revised shape calibration testing for the impact of stronger shears and increased blending
    B. Hernandez-Martin, et al. (with L. E. Bleem)Astronomy & Astrophysics, Volume 640, id.A117, 2020. arXiv:2007.00386
  21. Galaxy Clusters Selected via the Sunyaev-Zel’dovich Effect in the SPTpol 100-Square-Degree Survey
    N. Huang, L. Bleem, B. Stalder, et al.
    The Astronomical Journal, 159, 3, 110 (2020). DOI:10.3847/1538-3881/ab6a96. arXiv:1907.09621.
  22. The SPTpol Extended Cluster Survey
    SPT and DES collaborations: L. Bleem, S.Bocquet, –, N. Ramanchandra, et al.
    The Astrophysical Journal Supplement Series, 247, 1, 25 (2020). DOI:10.3847/1538-4365/ab6993. arXiv:1910.04121.
  23. Measurements of B-mode Polarization of the Cosmic Microwave Background from 500 Square Degrees of SPTpol Data
    SPTpol Collaboration: J. T. Sayre, C. L. Reichardt, J.W. Henning et al. (with L. Bleem)
    Physical Review D, 101, 12, 122003 (2020). DOI:10.1103/PhysRevD.101.122003. arXiv:1910.05748.
  24. Constraints on Cosmological Parameters from the 500 deg2 SPTpol Lensing Power Spectrum
    SPTpol Collaboration: F. Bianchini et al. (with L. Bleem)
    The Astrophysical Journal, 888, 2, 119 (2020). DOI:10.3847/1538-4357/ab6082. arXiv:1910.07157.
  25. An X-ray Detection of Star Formation In a Highly Magnified Giant Arc
    M. Bayliss et al. (with L. Bleem)
    Nature Astronomy, 4 (2020). DOI:10.1038/s41550-019-0888-7. arXiv:1910.05343.
  26. Strong Lensing Model of SPT-CLJ0356-5337, a Major Merger Candidate at Redshift 1.0359
    G. Mahler, K. Sharon, M.D. Gladders, L. Bleem, et al.
    The Astrophysical Journal, 894, 2, 150 (2020). DOI:10.3847/1538-4357/ab886b . arXiv:1910.14006.
  27. Surrogate modelling the Baryonic Universe II: On forward modelling the colours of individual and populations of galaxies
    Chaves-Montero, Jonás; Hearin, Andrew
    MNRAS, Sept. 2021, DOI: 10.1093/mnras/stab1831, arXiv:2105.05853
  28. Mitigating Shear-dependent Object Detection Biases with Metacalibration
    E.S. Sheldon, M.R. Becker, N. MacCrann, M. Jarvis
    The Astrophysical Journal, 902, 2, 138 (2020). DOI:10.3847/1538-4357/abb595. arXiv:1911.02505.
  29. Matter Power Spectrum Emulator for f(R) Modified Gravity Cosmologies.  Nesar Ramachandra, Georgios Valogiannis, Mustapha Ishak, Katrin Heitmann.  arXiv: https://arxiv.org/abs/2010.00596
  30. The Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: N-body Mock Challenge for the Quasar Sample.  Alex Smith, Etienne Burtin, Iiamin Hou, Salman Habib, Katrin Heitman, et al.  DOI: 10.1093/mnras/staa2825. arXiv: arXiv:2007.09003v2.
  31. The Completed SDSS-IV extended Baryon Oscillation Survey: N-body Spectroscopic Survey: N-body Mock Challenge for the eBoss Emission Line Galaxy Sample.  Alex Smith, Etienne Burtin, Jiamin Hou, Richard Neveux, Ashley J. Ross, Shadab Alam, Jonathan Brinkmann, Kyle S. Dawson, Salman Habib, Katrin Heitmann, et al.  DOI: http://10.1093/mnras/staa2825. arXiv: http://arXiv:2007.09003.
  32. CMB-S4: Forecasting Constraints on Primordial Gravitational Waves.  Kevork Abazalian, Graeme E. Addison, Peter S. Barry, Amy Bender, Lindsey Bleem, Katrin Heitmann, Salman Habib, et al.  arXiv: https://arxiv.org/abs/2008.12619
  33. The Last Journey. I. An Extreme-Scale Simulation on the MirA Supercomputer.  Katrin Heitmann, Nicholas Frontiere, Estegan Rangel, Patricia Larsen, Adrian Pope, Imran Sultan, Thomas Uram, Salman Habib, Hal Finkel, Danila Korytov, Eve Kovacs, Silvia Rizzi, Joe Insley.  DOI: https://iopscience.iop.org/article/10.3847/1538-4365/abcc67.  arXiv:  https://arxiv.org/abs/2007.09003.
  34. On-sky performance of the SPT-3G frequency domain multiplexed readout.  Amy Bender, P. S. Barry, K. Byrum, J. E. Carlstrom, Chang, Clarence, et al.   DOI: https://10.1007/s10909-019-02280-w.  arXiv: https://arxiv.org/abs/1907.10947.
  35. Performance of a low-parasitic frequency-domain multiplexing readout.  A. E. Lowitz, A. N. Bender, P. Barry, T. W. Cecil, C. L. Chang, R. Divan,  M. A. Dobbs,  A. J. Gilbert,  S. E. Kuhlmann,  M. Lisovenko,  J. Montgomery, V. Novosad, S. Padin, J. E. Pearson, G. Wang,  V. Yefremenko, J. Zhang, et al.  DOI: 10.1007/s10909-020-02384-8.  arXiv: https://arxiv.org/abs/1907.09035.
  36. Performance of Al-Mn Transition-Edge Sensor Bolometers in SPT-3G.  S. Raghunathan,  S. Patil, E. Baxter, B. A. Benson, L. E. Bleem, T. M. Crawford, G. P. Holder, et al.  DOI: 10.1007/s10909-019-02259-7.  arXiv: https://arxiv.org/abs/1907.11976.
  37. Strong Lensing Model of SPT-CLJ0356-5337, a Major Merger Candidate at Redshift 1.0359.  Guillaume Mahler, Keren Sharon,  Michael D. Gladders,  Lindsey Bleem, Matthew B. Bayliss, et al.  DOI: 10.3847/1538-4357/ab886b.  arXiv: https://arxiv.org/abs/1910.14006.
  38. The Dark Energy Survey supernova program: modelling selection efficiency and observed core-collapse supernova contamination.  M. Vincenzi, M. Sullivan, (includes E. Kovacs) et al.  arXiv: 2012.07180.

Calendar Year 2019

  1. The importance of secondary halos for strong lensing in massive galaxy clusters across redshift
    N. Li, M.D. Gladders, K. Heitmann, E.M. Rangel, H.L. Child, M.K. Florian, L.E. Bleem, S. Habib, H.J. Finkel
    Astrophys. J, 878, 122 (2019). DOI:10.3847/1538-4357/ab1f74. arXiv:1810.13330.
  2. CMB-S4 Decadal Survey APC White Paper.  Kevork Abazalian, Graeme Addison, Peter Sdshead, Zeeshan Ahmed, Steven W. Allen,  Peter S. Barry, Amy N. Bender, Lindsey Bleem, Thomas Cecil, Clarence L. Chang, Sebastian Bocquet, Katrin Heitmann, et al.  arXiv: https://arxiv.org/abs/1908.01062.
  3. CosmoDC2: A Synthetic Sky Catalog for Dark Energy Science with LSST
    Danila Korytov, Andrew Hearin, Eve Kovacs, Patricia Larsen, Katrin Heitmann, Salman Habis, et al.
    Submitted to APJS. DOI:1907.06530. arXiv:10.3847/1538-4365ab510c.
  4. Clustering constraints on the relative sizes of central and satellite galaxies.
    Hearin, Andrew; Behroozi, Peter; Kraytsoy, Andrey; et al.
    Submitted to MNRAS. arXiv:1711.10500.
  5. Cosmological Evidence Modelling: a new simulation-based approach to constrain cosmology on non-linear scales
    Johannes U. Lange, Frank C. Van den Bosch, Andrew R. Zentner, Kuan Wang, Andrew P. Hearin, Hong Guo.
    Publciation Details. DOI:1909.03107v1. arXiv:10.1093/mnras/stz2664.
  6. Weak Lensing Reveals a Tight Connection Between Dark Matter Halo Mass and the Distribution of Stellar Mass in Massive Galaxies
    Song Huang, Alexie Leuthaud, Andrew Hearin, et al.
    Publciation Details. DOI:1811.01139 [astro-ph.GA]. arXiv:10.1093/mnras/stz3314.
  7. Surrogate modeling the Baryonic Universe I: The color of star formation
    Jonas Chaves-Montero, Andrew Hearin.
    Publciation Details. DOI:1610.11883v1. arXiv:10.1093/mnras/staa1230.
  8. PRIMUS: CLUSTERING OF STAR-FORMING AND QUIESCENT CENTRAL GALAXIES AT 0.2 < z < 0.9
    Angela M. Berti, Alison L. Coil, Andrew P. Hearin, John Moustakas.
    Publciation Details. DOI:1903.03127. arXiv:10.3847/1538-4357/ab3b5d.
  9. Spectroscopic Confirmation of Five Galaxy Clusters at z > 1.25 in the 2500 sq. deg. SPT-SZ Survey
    SPT collaboration (with L. Bleem)
    Astrophys. J., 870, 1 (2019). DOI:10.3847/1538-4357/aaeed0. arXiv:1806.01962.
  10. X-Ray Properties of SPT-selected Galaxy Clusters at 0.2 < z < 1.5 Observed with XMM-Newton
    SPT collaboration (with L. Bleem)
    The Astrophysical Journal, 871, 1 (2019). DOI:10.3847/1538-4357/aaf230. arXiv:1807.02556.
  11. Cluster Cosmology Constraints from the 2500 deg2 SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope
    SPT collaboration (with L. Bleem)
    The Astrophysical Journal, 871, 1 (2019). DOI:10.3847/1538-4357/ab1f10. arXiv:1812.01679.
  12. The Borg Cube Simulation: Cosmological Hydrodynamics with CRK-SPH
    J.D. Emberson, N. Frontiere, S. Habib, K. Heitmann, P. Larsen, H. Finkel, A. Pope
    Astrophys. J. 877, 85 (2019). DOI:10.3847/1538-4357/ab1b31. arXiv:1811.03593.
  13. Effects of Massive Neutrinos and Dynamical Dark Energy on the Cluster Mass Function
    R. Biswas, K. Heitmann, S. Habib, A. Upadhye, A. Pope, N. Frontiere
    Submitted to PRD. arXiv:1901.10690.
  14. Galaxy Kinematics and Mass Calibration in Massive SZE Selected Galaxy Clusters to z=1.3
    SPT collaboration (with L. Bleem)
    MNRAS, 482, 1 (2019). DOI:10.1093/mnras/sty2645. arXiv:1711.09903.
  15. Dark Energy Survey Year 1 Results: Methodology and Projections for Joint Analysis of Galaxy Clustering, Galaxy Lensing, and CMB Lensing Two-point Functions
    SPT and DES collaborations (with L. Bleem)
    Phys Rev D., 99, 2, 023508 (2019). DOI:10.1103/PhysRevD.99.023508. arXiv:1802.05257.
  16. Galaxy populations in the most distant SPT-SZ clusters. I. Environmental quenching in massive clusters at 1.4 ≲ z ≲ 1.7
    SPT collaboration (with L. Bleem)
    Astronomy & Astrophysics, 622, A117 (2019). DOI:10.1051/0004-6361/201833944. arXiv:1807.09768.
  17. Mass Calibration of Optically Selected DES Clusters Using a Measurement of CMB-cluster Lensing with SPTpol Data
    SPT and DES collaborations (with L. Bleem)
    Astrophys. J., 872, 2, 170 (2019). DOI:10.3847/1538-4357/ab01ca. arXiv:1810.10998.
  18. Neutrino Mass from Cosmology: Probing Physics Beyond the Standard Model
    C. Dvorkin, M. Gerbino, D. Alonso, et al.
    Astro2020 White Paper. arXiv:1903.03689.
  19. Tracking the time-variable Millimeter-wave sky with CMB experiments
    G. Holder, E. Berger, L. Bleem, T. Crawford, D. Scott, N. Whitehorn.
    Astro2020 White Paper.
  20. Sunyaev-Zel’dovich Effect and X-ray Scaling Relations from Weak-Lensing Mass Calibration of 32 SPT Selected Galaxy Clusters
    SPT collaboration (with L. Bleem)
    MNRAS, 483, 3 (2019). DOI:10.1093/mnras/sty3088. arXiv:1711.05344.
  21. A Measurement of the Cosmic Microwave Background Lensing Potential and Power Spectrum from 500 deg2 of SPTpol Temperature and Polarization Data
    SPT collaboration (with L. Bleem)
    The Astrophysical Journal, 884, 1, 70 (2019). DOI:10.3847/1538-4357/ab4186. arXiv:1905.05777.
  22. Fractional Polarisation of Extragalactic Sources in the 500-square-degree SPTpol Survey
    SPT collaboration (with L. Bleem)
    MNRAS 490, 4 (2019). DOI:10.1093/mnras/stz2905. arXiv:1907.02156.
  23. CMB-S4 Science Case, Reference Design, and Project Plan
    CMB-S4 Collaboration (with L. Bleem, S. Habib, K. Heitmann, M. Gerbino)
    arXiv:1907.04473.
  24. Detection of CMB-Cluster Lensing using Polarization Data from SPTpol
    SPT and DES collaborations (with L. Bleem)
    Physical Review Letters, 123, 18, 181301 (2019). DOI:10.1103/PhysRevLett.123.181301. arXiv:1907.08605.
  25. The Outer Rim Simulation: A Path to Many-Core Supercomputers
    K. Heitmann, H. Finkel, A. Pope, V. Morozov, N. Frontiere, S. Habib, E. Rangel, T. Uram, D. Korytov, H. Child, S. Flender, J. Insley, S. Rizzi
    The Astrophysical Journal Supplement Series, 245, 1, 16 (2019). DOI:10.3847/1538-4365/ab4da1. arXiv:1904.11970.
  26. HACC Cosmological Simulations: First Data Release
    K. Heitmann, T. Uram, H. Finkel, N. Frontiere, S. Habib, A. Pope, E. Rangel, J. Hollowed, D. Korytov, P. Larsen, B.S. Allen, K. Chard, I. Foster
    The Astrophysical Journal Supplement Series, 244, 1, 17 (2019). DOI:10.3847/1538-4365/ab3724. arXiv:1904.11966.
  27. Consistency of cosmic microwave background temperature measurements in three frequency bands in the 2500-square-degree SPT-SZ survey
    SPT collaboration (with L. Bleem)
    JCAP, 7, 038 (2019). DOI:10.1088/1475-7516/2019/07/038. arXiv:1904.12995.
  28. Cosmological lensing ratios with DES Y1, SPT and Planck
    J. Prat, et al. (with L. Bleem)
    MNRAS, 487, 1 (2019). DOI:10.1093/mnras/stz1309. arXiv:1810.02212.
  29. South Pole Telescope Follow-up of IceCube-190331A
    N. Whitehorn and L. Bleem for the SPT collaboration
    The Astronomer’s Telegram, No. 12735. (link)
  30. Dark Energy Survey Year 1 Results: Joint Analysis of Galaxy Clustering, Galaxy Lensing, and CMB Lensing Two-point Functions
    SPT and DES collaborations (with L. Bleem)
    Physical Review D, 100, 2, 023541 (2019). DOI:10.1103/PhysRevD.100.023541. arXiv:1810.02322.
  31. Measurements of the Cross-spectra of the Cosmic Infrared and Microwave Backgrounds from 95 to 1200 GHz
    SPT collaboration: M. Viero et al. (with L. Bleem)
    Astrophy J., 881, 2, 96 (2019). DOI:10.3847/1538-4357/ab2da0. arXiv:1810.10643.
  32. Measurement of the splashback feature around SZ-selected Galaxy clusters with DES, SPT, and ACT
    DES, SPT, and ACT Collaborations: T. Shin et al. (with L. Bleem)
    MNRAS, 487, 2 (2019). DOI:10.1093/mnras/stz1434. arXiv:1811.06081.
  33. Dark Energy Survey Year 1 Results: Tomographic cross-correlations between Dark Energy Survey galaxies and CMB lensing from South Pole Telescope +Planck
    DES and SPT Collaborations: Y. Omori et al. (with L. Bleem)
    Physical Review D, 100, 4, 043501 (2019). DOI:10.1103/PhysRevD.100.043501. arXiv:arXiv:1810.02342.
  34. Dark Energy Survey Year 1 Results: Cross-correlation between Dark Energy Survey Y1 galaxy weak lensing and South Pole Telescope+Planck CMB weak lensing
    DES and SPT Collaborations: Y. Omori et al. (with L. Bleem)
    Physical Review D, 100, 4, 043517 (2019). DOI:10.1103/PhysRevD.100.043517. arXiv:1810.02441.
  35. CosmoDC2: A Synthetic Sky Catalog for Dark Energy Science with LSST
    D. Korytov, A. Hearin, E. Kovacs, P. Larsen, E. Rangel, J. Hollowed, et al. (including K. Heitmann, N. Frontiere, S. Habib, A. Pope)
    The Astrophysical Journal Supplement Series, 245, 2, 26 (2019). DOI:10.3847/1538-4365/ab510c. arXiv:1907.06530.
  36. Cosmological Evidence Modelling: a new simulation-based approach to constrain cosmology on non-linear scales
    J.U. Lange, F.C. van den Bosch, A.R. Zentner, K. Wang, A.P. Hearin, H. Guo
    MNRAS, 490, 2 (2019). DOI:10.1093/mnras/stz2664. arXiv:1909.03107.
  37. Particle Physics with the Cosmic Microwave Background with SPT-3G
    SPT-3G Collaboration: J. S. Avva et al. (with L. Bleem)
    TAUP 2019 Proceedings. arXiv:1911.08047.
  38. Discovery of a Powerful >10^61 erg AGN outburst in the Distant Galaxy Cluster SPT-CLJ0528-5300
    M. Calzadilla et al. (with L. Bleem)
    The Astrophysical Journal Letters, 887, 1, L17 (2019). DOI:10.3847/2041-8213/ab5b07. arXiv:1911.12828.
  39. Measuring the evolution of intergalactic gas from z=0 to 5 using the kinematic Sunyaev-Zel’dovich effect
    J. Chaves-Montero, C. Hernandez-Monteagudo, R.E Angulo, and J. D. Emberson.
    Submitted to MNRAS. arXiv:1911.10690.
  40. Angular Redshift Fluctuations: a New Cosmological Observable
    C. Hernandez-Monteagudo, J. Chaves-Montero, and R.E Angulo
    Submitted to PRL. arXiv:1911.12056.
  41. Cosmological Constraints from Multiple Probes in the Dark Energy Survey
    The Dark Energy Survey, TMC Abbott et al. (with M. Becker)
    Physical Review Letters, 122, 17, 171301 (2019). DOI:10.1103/PhysRevLett.122.171301. arXiv:1811.02375.
  42. The Aemulus Project. I. Numerical Simulations for Precision Cosmology
    J. DeRose, R.H. Wechsler, J.L. Tinker, M.R. Becker, et al.
    The Astrophysical Journal, 875, 1, 69 (2019). DOI:10.3847/1538-4357/ab1085. arXiv:1804.05865.
  43. The Aemulus Project. II. Emulating the Halo Mass Function
    T. McClintock, E. Rozo, M.R. Becker, et al.
    The Astrophysical Journal, 872, 1, 53 (2019). DOI:10.3847/1538-4357/aaf568. arXiv:1804.05866.
  44. The Aemulus Project. III. Emulation of the Galaxy Correlation Function
    Z. Zhai, J.L. Tinker, M.R. Becker, et al.
    The Astrophysical Journal, 874, 1, 95 (2019). DOI:10.3847/1538-4357/ab0d7b. arXiv:1804.05867.
  45. The Buzzard Flock: Dark Energy Survey Synthetic Sky Catalogs
    J. DeRose, R.H. Wechsler, M.R. Becker, et al. (including V. Vikram)
    arXiv:1901.02401.
  46. Dark Energy Survey Year 1 results: weak lensing mass calibration of redMaPPer galaxy clusters
    T. McClintock, et al. (with V. Vikram)
    MNRAS, 482, 1 (2019). DOI:10.1093/mnras/sty2711. arXiv:1805.00039.
  47. The Aemulus Project IV: Emulating Halo Bias
    T. McClintock, E. Rozo, A. Banerjee, M.R. Becker, et al.
    arXiv:1907.13167.
  48. Dark Energy Survey Year 1 Results: Joint Analysis of Galaxy Clustering, Galaxy Lensing, and CMB Lensing Two-point Functions
    T.M.C. Abbott, et al. (with L. Bleem, V. Vikram)
    Physical Review D, 100, 2, 023541 (2019). DOI:10.1103/PhysRevD.100.023541. arXiv:1810.02322.
  49. Dark Energy Survey Year 1 Results: Constraints on Extended Cosmological Models from Galaxy Clustering and Weak Lensing
    T.M.C. Abbott, et al. (with M. Becker, V. Vikram)
    Physical Review D, 99, 12, 123505 (2019). DOI:10.1103/PhysRevD.99.123505. arXiv:1810.02499.
  50. How to optimally constrain galaxy assembly bias: supplement projected correlation functions with count-in-cells statistics.  Kuan Wang, Yao-Yuan Mao, Andrew R. Zentner, Frank C. van den Bosch, Johannes U. Lange, Chad M. Schafer, Antonio S. Villarreal, Andrew P. Hearing, Duncan Campbell.  DOI: http://10.1093/mnras/stz1733. arXiv: http://arXiv:1903.09656.
  51. UniverseMachine: The Correlation between Galaxy Growth and Dark Matter Halo Assembly from z=0-10.  Peter Behroozi, Risa Wechsler, Andrew Hearin, Charlie Conroy.  DOI: http://10.1093/mnras/stz1182 . arXiv:  http://arXiv:1806.07893.
  52. Report on LSST Next-generation Instrumentation Workshop.  Christopher W. Stubbs, Katrin Heitmann.  arXiv:  arXiv:1905.04669.
  53. Science Impacts of the SPHEREx All-Sky Optical to Near-Infrared Spectral Survey II: Report of a Community Workshop on the Scientific Synergies Between the SPHEREx Survey and Other Astronomy Observatories.  O. Dore’, –, L.E. Bleem, –, J. Chaves-Montero, –, et al.
    arXiv:1805.05489.
  54. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: anisotropic clustering analysis in configuration-space
    J. Hou, –, S. Habib, K. Heitmann, –, et al.
    MNRAS 480, 2521 (2018). DOI:10.1093/mnras/sty1984. arXiv:1801.02656.
  55. Clustering Constraints on the Relative Sizes of Central and Satellite Galaxies
    A.~Hearin, P.~Behroozi, A.~Kravtsov, and B.~Moster,
    arXiv:1711.10500. MNRAS 489, 1805 (2019).
  56. Constraints on Cosmological Parameters from the Angular Power Spectrum of a Combined 2500 sq. deg. SPT-SZ and Planck Gravitational Lensing Map
    G. Simard, –, L.E. Bleem, –, et al.
    arXiv:1712.07541. (submitted to Astrophys. J.)
  57. Probing the Weak Gravity Conjecture in the Cosmic Microwave BackgroundMartin Wolfgang Winkler, Martina Gerbino, Micol Benetti, Katrin Heitmann.  DOI: 10.1103/PhysRevD.  arXiv: arXiv:1911.11148 .
  58. Synthesis and Characterization of MoNb Films Superconducting at 100-200 mK.  A.N. Bender, A.J. Anderson, P.S. Barry, T.W. Cecil, C.L. Chang, V. Yefremenko, et al.   DOI: 10.1007/s10909-019-02258-8.  arXiv: https://arxiv.org/abs/1907.10947.                                                                                                                                                                                                         Calendar Year 2018

  1. Bispectrum as Baryon Acoustic Oscillation Interferometer
    H.L. Child, M. Takada, T. Nishimichi,T. Sunayama, Z. Slepian, S. Habib, K. Heitmann
    Phys. Rev. D 98, 123521 (2018), DOI: 10.1103/PhysRevD.98.123521, arXiv:1806.11147.
  2. SPHEREx: an all-sky NIR spectral survey.  Phillip M. Korngut, James J. Bock, Rachel Akeson, Matthew Ashby, Lindsey Bleem, et al.  Link: Authors Library Caltech.
  3. Photometric classification and redshift estimation of LSST Supernovae
    M. Dai, S. Kuhlmann, Y. Wang, and E. Kovacs,
    MNRAS 477, 4142 (2018). DOI:10.1093/mnras/sty965.
    arXiv:1701.05689.
  4. Quantum Sensing for High Energy Physics
    Z. Ahmed, –, S. Habib, –, E. Kovacs, –, et al.
    arXiv:1803.11306.
  5. WFIRST Science Investigation Team “Cosmology with the High Latitude Survey” Annual Report 2017
    O.~Dore’, –, K.~Heitmann, –, et al.
    arXiv:1804.03628.
  6. The Effect of Photometric Redshift Uncertainties on Galaxy Clustering and Baryonic Acoustic Oscillations
    J. Chaves-Montero, R.E Angulo, and C. Hernandez-Monteagudo
    MNRAS 477, 3892 (2018). DOI:10.1093/mnras/sty924. arXiv:1610.09688.
  7. Halo Profiles and the Concentration-Mass Relation for a LCDM Universe
    H.L. Child, S. Habib, K. Heitmann, N. Frontiere, H. Finkel, A. Pope, and V. Morozov
    Astrophys. J. 859, 55 (2018). DOI:10.3847/1538-4357/aabf95. arXiv:1804.10199.
  8. Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of the Thermal Sunyaev-Zel’dovich effect and Weak Lensing
    K. Osato, S. Flender, D. Nagai, M. Shirasaki, and N. Yoshida
    MNRAS 475, 532 (2018). DOI:10.1093/mnras/stx3215.
    arXiv:1706.08972.
  9. The Clustering of the SDSS-IV Extended Baryon Oscillation Spectroscopic Survey DR14 Quasar Sample: Measurement of the Growth Rate of Structure from the Anisotropic Correlation Function Between Redshift 0.8 and 2.2
    P. Zarrouk, –, S. Habib, K. Heitmann, –, et al.
    MNRAS 477, 1604 (2018). DOI:10.1093/mnras/sty506.
    arXiv:1801.03062.
  10. The Clustering of the SDSS-IV Extended Baryon Oscillation Spectroscopic Survey DR14 Quasar Sample: Structure Growth Rate Measurement from the Anisotropic Quasar Power Spectrum in the Redshift Range 0.8 < z < 2.2
    H. Gil-Marin, –, S. Habib, K. Heitmann, –, et al.
    MNRAS 477, 1639 (2018). DOI:10.1093/mnras/sty453.
    arXiv:1801.02689.
  11. Cosmic Visions Dark Energy: Small Projects Portfolio
    K. Dawson, J. Frieman, K. Heitmann, B. Jain, S. Kahn, R. Mandelbaum, S. Perlmutter, and A. Slosar
    arXiv:1802.07216.
  12. DESCQA: An Automated Validation Framework for Synthetic Sky Catalogs
    Y.-Y. Mao, E. Kovacs, K. Heitmann, T.D. Uram, A.J. Benson, D. Campbell, S.A. Cora, J. DeRose, T. Di Matteo, S. Habib, A.P. Hearin, B.J Kalmbach, S.K. Krughoff, F. Lanusse, Z. Lukic’, R. Mandelbaum, J.A. Newman, N. Padilla, E. Paillas, A. Pope, P.M. Ricker, A.N. Ruiz, A. Tenneti, C.A. Vega-Martinez, R.H. Wechsler, R. Zhou, and Y. Zu [The LSST Dark Energy Science Collaboration]
    Astrophys. J. Supp. 234, 36 (2018). DOI:10.3847/1538-4365/aaa6c3.
    arXiv:1709.09665.
  13. SPT-3G: A Multichroic Receiver for the South Pole Telescope
    A. Anderson et al. (with L. Bleem) [SPT-3G collaboration]
    Journal of Low Temperature Physics, Volume 193, Issue 5-6, pp. 1057-1065; DOI:10.1007/s10909-018-2007-z
  14. Maps of the Southern Millimeter-wave Sky from Combined 2500 deg2 SPT-SZ and Planck Temperature Data
    R. Chown et al. (with L. Bleem) [SPT Collaboration]
    Astrophy. Journal Supplment Series, Volume 239, Issue 1, article id. 10, (2018).  DOI:10.3847/1538-4365/aae694 arXiv:1803.10682
  15. Baryon content in a sample of 91 galaxy clusters selected by the South Pole Telescope at 0.2 <z < 1.25
    I. Chiu et al. (with L. Bleem) [SPT collaboration]
    MNRAS, Volume 478, Issue 3, p.3072-3099 (2018). DOI:10.1093/mnras/sty1284 arXiv:1711.00917
  16. Year two instrument status of the SPT-3G cosmic microwave background receiver
    A. N. Bender et al. (with L. Bleem) [SPT-3G Collaboration]
    Proceedings of the SPIE, Volume 10708, id. 1070803, DOI:10.1117/12.2312426 arXiv:1809.00036
  17. SPHEREx: an all-sky NIR spectral survey
    P. Korngut, et al. (with L. Bleem)
    Proceedings of the SPIE, Volume 10698, id. 106981U, DOI:10.1117/12.2312860
  18. A measurement of CMB cluster lensing with SPT and DES year 1 data
    E. Baxter et al. (with L. Bleem) [SPT and DES collaborations]
    MNRAS, Volume 476, Issue 2, p.2674-2688 (2018). DOI:10.1093/mnras/sty305, arXiv:1708.01360
  19. Cluster mass calibration at high redshift: HST weak lensing analysis of 13 distant galaxy clusters from the South Pole Telescope Sunyaev-Zel’dovich Survey
    T. Schrabback, et al. (with L. Bleem) [SPT collaboration]
    MNRAS, Volume 474, Issue 2, p.2635-2678 (2018); DOI:10.1093/mnras/stx2666, arXiv:1611.03866
  20. A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data
    Z. Hou, et al. (with L. Bleem) [SPT collaboration]
    Astrophys J., Volume 853, Issue 1, article id. 3 (2018). DOI:10.3847/1538-4357/aaa3ef, arXiv:1704.00884
  21. Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data.  J. Henning, et al. (with L. Bleem) [SPT collaboration]
    Astrophys J., Volume 852, Issue 2, article id. 97 (2018). DOI:10.3847/1538-4357/aa9ff4, arXiv:1707.09353
  22. UNIVERSEMACHINE: The correlation between galaxy growth and dark matter halo assembly from z = 0-10.   Behroozi, Peter; Wechsler, Risa H.; Hearin, Andrew P.; Conroy, Charlie
    MNRAS, 488, 3143, (2018).
  23. Brightest galaxies as halo centre tracers in SDSS DR7.  Johannes U. Lange, Frank C. van den Bosch, Andrew Hearing, et al.  DOI: http://10.1093/mnras/stx2434, arXiv: http://arXiv:1705.05043 (astro-ph.GA).

Calendar Year 2017

  1. The Mira-Titan Universe. II. Matter Power Spectrum Emulation
    E. Lawrence, K. Heitmann, J. Kwan, A. Upadhye, D. Bingham, S. Habib, D. Higdon, A. Pope, H. Finkel, and N. Frontiere
    Astrophys. J. 847, 50 (2017). DOI:10.3847/1538-4357/aa86a9.
    arXiv:arXiv:1705.03388.
  2. CRKSPH – A Conservative Reproducing Kernel Smoothed Particle Hydrodynamics Scheme
    N. Frontiere, C.D. Raskin, and M.J. Owen
    J. Comp. Phys. 332 160 (2017). DOI:10.1016/j.jcp.2016.12.004.
    arXiv:arXiv:1605.00725.
  3. Forward Modeling of Large-Scale Structure: An Open-Source Approach with Halotools
    A. Hearin, D. Campbell, E. Tollerud, P. Behroozi, B. Diemer, N.J. Goldbaum, E. Jennings, A. Leauthaud, Y.-Y. Mao, S. More, J. Parejko, and M. Sinha, B. Sipocz, and A. Zentner
    The Astronomical Journal, 154, 190 (2017). DOI:10.3847/1538-3881/aa859f. arXiv:1606.04106.
  4. Optical-SZE Scaling Relations for DES Optically Selected Clusters within the SPT-SZ Survey
    A. Saro, et al. (with L. Bleem)
    Monthly Notices of the Royal Astronomical Society, 468, 3347 (2017). DOI:10.1093/mnras/stx594. arXiv:1605.08770.
  5. High Frequency Cluster Radio Galaxies: Luminosity Functions and Implications for SZE Selected Cluster Samples
    N. Gupta, et al. (with S. Bocquet)
    Monthly Notices of the Royal Astronomical Society, 467, 3737 (2017). DOI:10.1093/mnras/stx095. arXiv:1605.05329.
  6. Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps
    L. Clerkin, et al. (with V. Vikram)
    Monthly Notices of the Royal Astronomical Society, 466, 1444 (2017). DOI:10.1093/mnras/stw2106. arXiv:1605.02036.
  7. The high mass end of the stellar mass function: Dependence on stellar population models and agreement between fits to the light profile
    M. Bernardi, A. Meert, R.K. Sheth, J.-L. Fischer, M. Huertas-Company, C. Maraston, F. Shankar, and V. Vikram
    Monthly Notices of the Royal Astronomical Society, 467, 2217 (2017). DOI:10.1093/mnras/stx176. arXiv:1604.01036.
  8. Galaxy Populations in Massive Galaxy Clusters to z=1.1: Color Distribution, Concentration, Halo Occupation Number and Red Sequence Fraction
    C. Hennig, et al. (with S. Bocquet, V. Vikram)
    Monthly Notices of the Royal Astronomical Society, 467, 4015 (2017). DOI:10.1093/mnras/stx175. arXiv:1604.00988.
  9. Galaxy-Galaxy Lensing in the DES Science Verification Data
    J. Clampitt, et al. (with V. Vikram)
    Monthly Notices of the Royal Astronomical Society, 465, 4204 (2017). DOI:10.1093/mnras/stw2988. arXiv:1603.05790.
  10. Cosmological neutrino simulations at extreme scale
    J.D. Emberson, H.-R. Yu, D. Inman, T.-J. Zhang, U.-L. Pen, et al.
    Research in Astronomy and Astrophysics, 17, 085 (2017). DOI:10.1088/1674-4527/17/8/85. arXiv:1611.01545.
  11. Simulating the cold dark matter-neutrino dipole with TianNu
    D. Inman, H.-R. Yu, H.-M. Zhu, J.D. Emberson, et al.
    Physical Review D, 95, 083518 (2017). DOI:10.1103/PhysRevD.95.083518. arXiv:1610.09354.
  12. Comparison of Cosmological Parameters Determined from CMB Temperature Power Spectra from the South Pole Telescope and the Planck Satellite
    K. Aylor, –, L.E. Bleem, –, et al.
    Astrophys. J. 850, 101 (2017). DOI:10.3847/1538-4357/aa947b.
    arXiv:arXiv:1706.10286.
  13. HACC: Extreme Scaling and Performance Across Diverse Architectures
    S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann, K. Kumaran, V. Vishwanath, T.J. Peterka, J. Insley, D. Daniel, P. Fasel, and Z. Lukic’
    Comm. ACM (Research Highlight) 60, 97 (2017). DOI:10.1145/3015569.
  14. Constraints on the Optical Depth of Galaxy Groups and Clusters
    S. Flender, D. Nagai, and M.~McDonald
    Astrophys. J. 837, 124 (2017). DOI:10.3847/1538-4357/aa60bf.
    arXiv:1610.08029.
  15. Building Halo Merger Trees from the Q Continuum Simulation
    E. Rangel, N. Frontiere, S. Habib, K. Heitmann, W.-K. Liao, A. Agrawal, and A. Choudhary
    Technical Paper, 24th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC) (2017). DOI:10.1109/HiPC.2017.00052.
  16. A Measurement of the Galaxy Group-Thermal Sunyaev-Zel’dovich Effect Cross-Correlation Function
    V. Vikram, A. Lidz, and B. Jain
    MNRAS 467, 2315 (2017). DOI:10.1093/mnras/stw3311.
    arXiv:arXiv:1608.04160.

Calendar Year 2016

  1. Parallel DTFE Surface Density Field Reconstruction
    E. Rangel, N. Li, S. Habib, et al.
    2016 IEEE International Conference on Cluster Computing (2016). DOI:10.1109/CLUSTER.2016.40.
  2. Maps of the Magellanic Clouds from Combined South Pole Telescope and Planck Data
    T.M. Crawford, et al. (with L. Bleem)
    The Astrophysical Journal Supplement Series, 227, 23 (2016). DOI:10.3847/1538-4365/227/2/23. arXiv:1605.00966.
  3. Millimeter Transient Point Sources in the SPTpol 100 Square Degree Survey
    N. Whitehorn, et al. (with L. Bleem)
    The Astrophysical Journal, 830, 143 (2016). DOI:10.3847/0004-637X/830/2/143. arXiv:1604.03507.
  4. Cosmological Constraints from Galaxy Clusters in the 2500 square-degree SPT-SZ Survey
    T. de Haan, B.A. Benson, L. Bleem, et al. (with S. Bocquet)
    The Astrophysical Journal, 832, 95 (2016). DOI:10.3847/0004-637X/832/1/95. arXiv:1603.06522.
  5. Galaxy Populations in the 26 most massive Galaxy Clusters in the South Pole Telescope SZE Survey
    A. Zenteno, et al. (with S. Bocquet)
    Monthly Notices of the Royal Astronomical Society, 462, 830 (2016). DOI:10.1093/mnras/stw1649. arXiv:1603.05981.
  6. The Evolution of the Intracluster Medium Metallicity in Sunyaev-Zel’dovich-Selected Galaxy Clusters at 0 < z < 1.5
    M. McDonald, et al. (with L. Bleem)
    The Astrophysical Journal, 826, 124 (2016). DOI:10.3847/0004-637X/826/2/124. arXiv:1603.03035.
  7. Joint Measurement of Lensing-Galaxy Correlations Using SPT and DES SV Data
    E.J. Baxter, et al. (with L. Bleem)
    Monthly Notices of the Royal Astronomical Society, 461, 4099 (2016). DOI:10.1093/mnras/stw1584. arXiv:1602.07384.
  8. Efficient construction of mock catalogs for baryon acoustic oscillation surveys
    T. Sunayama, N. Padmanabhan, K. Heitmann, S. Habib, and E. Rangel
    Journal of Cosmology and Astroparticle Physics, 105, 051 (2016). DOI:10.1088/1475-7516/2016/05/051. arXiv:1510.06665.
  9. Star-forming Brightest Cluster Galaxies at 0.25 > z > 1.25: A Transitioning Fuel Supply
    M. McDonald, et al. (with L. Bleem)
    The Astrophysical Journal, 817, 86 (2016). DOI:10.3847/0004-637X/817/2/86. arXiv:1508.06283.
  10. Probing star formation in the dense environments of z ∼ 1 lensing haloes aligned with dusty star-forming galaxies detected with the South Pole Telescope
    N. Welikala, et al. (with L. Bleem)
    Monthly Notices of the Royal Astronomical Society, 455, 1629 (2016). DOI:10.1093/mnras/stv2302. arXiv:1510.01359.
  11. Baryon Content of Massive Galaxy Clusters (0.57 < z < 1.33)
    I. Chiu, et al. (with L. Bleem, S. Bocquet)
    Monthly Notices of the Royal Astronomical Society, 455, 258 (2016). DOI:10.1093/mnras/stv2303. arXiv:1412.7823.
  12. Simulations of the Pairwise Kinematic Sunyaev-Zeldovich Signal
    S. Flender, L. Bleem, H. Finkel, S. Habib, K. Heitmann, and G. Holder
    The Astrophysical Journal, 823, 98 (2016). DOI:10.3847/0004-637X/823/2/98. arXiv:1511.02843.
  13. Detection of the kinematic Sunyaev-Zel’dovich effect with DES Year 1 and SPT
    B. Soergel, S. Flender, K.T. Story, L. Bleem, T. Giannantonio, et al.
    Monthly Notices of the Royal Astronomical Society, 461, 3172 (2016). DOI:10.1093/mnras/stw1455. arXiv:1603.03904.
  14. The Gini Coefficient as a Tool for Image Family Identification in Strong Lensing Systems with Multiple Images
    M.K. Florian, M.D. Gladders, N. Li, and K. Sharon
    The Astrophysical Journal Letters, 816, L23 (2016). DOI:10.3847/2041-8205/816/2/L23. arXiv:1511.03594.
  15. Cross-correlation of gravitational lensing from DES Science Verification data with SPT and Planck lensing
    D. Kirk, et al. (with L. Bleem, V. Vikram)
    Monthly Notices of the Royal Astronomical Society, 459, 21 (2016). DOI:10.1093/mnras/stw570. arXiv:1512.04535.
  16. The RedMaPPer Galaxy Cluster Catalog From DES Science Verification Data
    E.S. Rykoff, et al. (with V. Vikram)
    The Astrophysical Journal Supplement Series, 224, 1 (2016). DOI:10.3847/0067-0049/224/1/1. arXiv:1601.00621.
  17. The Dark Energy Survey: more than dark energy – an overview
    T. Abbott, et al. (with V. Vikram)
    Monthly Notices of the Royal Astronomical Society, 460, 1270 (2016). DOI:10.1093/mnras/stw641. arXiv:1601.00329.
  18. No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey
    E. Suchyta, et al. (with V. Vikram)
    Monthly Notices of the Royal Astronomical Society, 457, 786 (2016). DOI:10.1093/mnras/stv2953. arXiv:1507.08336.
  19. CMB lensing tomography with the DES Science Verification galaxies
    T. Giannantonio, et al. (with V. Vikram)
    Monthly Notices of the Royal Astronomical Society, 456, 3213 (2016). DOI:10.1093/mnras/stv2678. arXiv:1507.05551.
  20. Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data
    T. Kacprzak, et al. (with V. Vikram)
    Monthly Notices of the Royal Astronomical Society, 463, 3653 (2016). DOI:10.1093/mnras/stw2070. arXiv:1603.05040.
  21. Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data
    M. Crocce, et al. (with V. Vikram)
    Monthly Notices of the Royal Astronomical Society, 455, 4301 (2016). DOI:10.1093/mnras/stv2590. arXiv:1507.05360.
  22. The massive end of the luminosity and stellar mass functions and clustering from CMASS to SDSS: evidence for and against passive evolution
    M. Bernardi, A. Meert, R.K. Sheth, M. Huertas-Company, C. Maraston, F. Shankar, and V. Vikram
    Monthly Notices of the Royal Astronomical Society, 455, 4122 (2016). DOI:10.1093/mnras/stv2487. arXiv:1510.07702.
  23. Weak lensing by galaxy troughs in DES Science Verification data
    D. Gruen, et al. (with V. Vikram)
    Monthly Notices of the Royal Astronomical Society, 455, 3367 (2016). DOI:10.1093/mnras/stv2506. arXiv:1507.05090.
  24. A catalogue of two-dimensional photometric decompositions in the SDSS-DR7 spectroscopic main galaxy sample: extension to g and i bands
    A. Meert, V. Vikram, and M. Bernardi
    Monthly Notices of the Royal Astronomical Society, 455, 2440 (2016). DOI:10.1093/mnras/stv2475. arXiv:1510.07631.
  25. A new method to measure galaxy bias by combining the density and weak lensing fields
    A. Pujol, C. Chang, E. Gaztañaga, A. Amara, A. Refregier, D.J. Bacon, J. Carretero, F.J. Castander, M. Crocce, P. Fosalba, M. Manera, and V. Vikram
    Monthly Notices of the Royal Astronomical Society, 462, 35 (2016). DOI:10.1093/mnras/stw1612. arXiv:1601.00160.
  26. Detection of enhancement in number densities of background galaxies due to magnification by massive galaxy clusters
    I. Chiu, et al. (with L. Bleem, S. Bocquet)
    Monthly Notices of the Royal Astronomical Society, 457, 3050 (2016). DOI:10.1093/mnras/stw190. arXiv:1510.01745.
  27. The Gini Coefficient as a Morphological Measurement of Strongly Lensed Galaxies in the Image Plane
    M.K. Florian, N. Li, and M.D. Gladders
    The Astrophysical Journal, 832, 168 (2016). DOI:10.3847/0004-637X/832/2/168. arXiv:1511.03617.
  28. PICS: Simulations of Strong Gravitational Lensing in Galaxy Clusters
    N. Li, M.D. Gladders, E.M. Rangel, M.K. Florian, L.E. Bleem, K. Heitmann, S. Habib, and P. Fasel
    The Astrophysical Journal, 828, 54 (2016). DOI:10.3847/0004-637X/828/1/54. arXiv:1511.03673.
  29. Self-adaptive Density Estimation of Particle Data
    T. Peterka, H. Croubois, N. Li, E. Rangel, and F. Cappello
    SIAM Journal on Scientific Computing, 38, S646 (2016). DOI:10.1137/15M1016308.
  30. Galaxies in X-ray Selected Clusters and Groups in Dark Energy Survey Data: Stellar Mass Growth of Bright Central Galaxies Since z ~ 1.2
    Y. Zhang, et al. (with V. Vikram)
    The Astrophysical Journal, 816, 98 (2016). DOI:10.3847/0004-637X/816/2/98. arXiv:1504.02983.

Calendar Year 2015

  1. Constraints on the Richness-Mass Relation and the Optical-SZE Positional Offset Distribution for SZE-Selected Clusters
    A. Saro, S. Bocquet, et al. (with L. Bleem)
    Monthly Notices of the Royal Astronomical Society, 454, 2305 (2015). DOI:10.1093/mnras/stv2141. arXiv:1506.07814.
  2. Deep Chandra, HST-COS, and Megacam Observations of the Phoenix Cluster: Extreme Star Formation and AGN Feedback on Hundred Kiloparsec Scales
    M. McDonald, et al. (with L. Bleem)
    The Astrophysical Journal, 811, 111 (2015). DOI:10.1088/0004-637X/811/2/111. arXiv:1508.05941.
  3. Wide-Field Lensing Mass Maps from DES Science Verification Data
    V. Vikram, et al.
    Physical Review D, 92, 022006 (2015). DOI:10.1103/PhysRevD.92.022006. arXiv:1504.03002.
  4. Stellar Kinematics and Metallicities in the Ultra-Faint Dwarf Galaxy Reticulum II
    J.D. Simon, et al. (with V. Vikram)
    The Astrophysical Journal, 808, 95, (2015). DOI:10.1088/0004-637X/808/1/95. arXiv:1504.02889.
  5. Characterization and correction of charge-induced pixel shifts in DECam
    D. Gruen, et al. (with V. Vikram)
    Journal of Instrumentation, 10, C05032 (2015). DOI:10.1088/1748-0221/10/05/C05032. arXiv:1501.02802.
  6. Analysis of Sunyaev-Zel’dovich Effect Mass-Observable Relations using South Pole Telescope Observations of an X-ray Selected Sample of Low Mass Galaxy Clusters and Groups
    J. Liu, et al. (with L. Bleem)
    Monthly Notices of the Royal Astronomical Society, 448, 2085 (2015). DOI:10.1093/mnras/stv080. arXiv:1407.7520.
  7. Galaxy Clusters Discovered via the Sunyaev-Zel’dovich Effect in the 2500-square-degree SPT-SZ survey
    L. Bleem, et al.
    The Astrophysical Journal Supplement, 216, 27 (2015). DOI:10.1088/0067-0049/216/2/27. arXiv:1409.0850.
  8. A measurement of secondary cosmic microwave background anisotropies from the 2500-square-degree SPT-SZ survey
    E. George, et al. (with L. Bleem)
    The Astrophysical Journal, 799, 177 (2015). DOI:10.1088/0004-637X/799/2/177. arXiv:1408.3161.
  9. Mass Calibration and Cosmological Analysis of the SPT-SZ Galaxy Cluster Sample Using Velocity Dispersion sigma_v and X-ray Y_X Measurements
    S. Bocquet, et al. (with L. Bleem)
    The Astrophysical Journal, 799, 214 (2015). DOI:10.1088/0004-637X/799/2/214. arXiv:1407.2942.
  10. The Blanco Cosmology Survey: An Optically-Selected Galaxy Cluster Catalog and a Public Release of Optical Data Products
    L. Bleem, et al.
    The Astrophysical Journal Supplement Series, 216, 20 (2015). DOI:10.1088/0067-0049/216/1/20. arXiv:1403.7186.
  11. A Measurement of the Cosmic Microwave Background Gravitational Lensing Potential from 100 Square Degrees of SPTpol Data
    K. Story, et al. (with L. Bleem)
    The Astrophysical Journal, 810, 50 (2015). DOI:10.1088/0004-637X/810/1/50. arXiv:1412.4760.
  12. Measurements of Sub-degree B-mode Polarization in the Cosmic Microwave Background from 100 Square Degrees of SPTpol Data
    R. Keisler, et al. (with L. Bleem)
    The Astrophysical Journal, 807, 151 (2015). DOI:10.1088/0004-637X/807/2/151. arXiv:1503.02315.
  13. A Measurement of Gravitational Lensing of the Cosmic Microwave Background by Galaxy Clusters Using Data from the South Pole Telescope
    E. Baxter, et al. (with L. Bleem)
    The Astrophysical Journal, 806, 247 (2015). DOI:10.1088/0004-637X/806/2/247. arXiv:1412.7521.
  14. X-ray cavities in a sample of 83 SPT-selected clusters of galaxies: Tracing the evolution of AGN feedback in clusters of galaxies out to z = 1.2
    J. Hlavacek-Larrondo, et al. (with L. Bleem)
    The Astrophysical Journal, 805, 35 (2015). DOI:10.1088/0004-637X/805/1/35. arXiv:1410.0025.
  15. Measurements of E-Mode Polarization and Temperature-E-Mode Correlation in the Cosmic Microwave Background from 100 Square Degrees of SPTpol Data
    A. Crites, et al. (with L. Bleem)
    The Astrophysical Journal, 805, 36 (2015). DOI:10.1088/0004-637X/805/1/36. arXiv:1411.1042.
  16. Measurement of Galaxy Cluster Integrated Comptonization and Mass Scaling Relations with the South Pole Telescope
    B. Saliwanchik, et al. (with L. Bleem)
    The Astrophysical Journal, 799, 137 (2015). DOI:10.1088/0004-637X/799/2/137. arXiv:1312.3015.

Calendar Year 2014

  1. On the Intermediate-redshift Central Stellar Mass-Halo Mass Relation, and Implications for the Evolution of the Most Massive Galaxies Since z ~ 1
    F. Shankar, et al. (with V. Vikram)
    The Astrophysical Journal Letters, 797, L27 (2014). DOI:10.1088/2041-8205/797/2/L27. arXiv:1411.2597.
  2. Testing Gravity Theories Using Stars
    J. Sakstein, B. Jain, and V. Vikram
    International Journal of Modern Physics D, 23, 1442002 (2014). DOI:10.1142/S0218271814420024. arXiv:1409.3708.
  3. The Redshift Evolution of the Mean Temperature, Pressure, and Entropy Profiles in 80 SPT-Selected Galaxy Clusters
    M. McDonald, et al. (with L. Bleem)
    The Astrophysical Journal, 794, 67 (2014). DOI:10.1088/0004-637X/794/1/67. arXiv:1404.6250.
  4. Constraints on the CMB Temperature Evolution using Multi-Band Measurements of the Sunyaev Zel’dovich Effect with the South Pole Telescope
    A. Saro, et al. (with L. Bleem)
    Monthly Notices of the Royal Astronomical Society, 440, 2610 (2014). DOI:10.1093/mnras/stu575. arXiv:1312.2462.
  5. Optical Spectroscopy and Velocity Dispersions of Galaxy Clusters from the SPT-SZ Survey
    J. Ruel, et al. (with L. Bleem)
    The Astrophysical Journal, 792, 45 (2014). DOI:10.1088/0004-637X/792/1/45. arXiv:1311.4953.
  6. SPT-CLJ2040-4451: An SZ-Selected Galaxy Cluster at z= 1.478 With Significant Ongoing Star Formation
    M. Bayliss, et al. (with L. Bleem)
    The Astrophysical Journal, 794, 12 (2014). DOI:10.1088/0004-637X/794/1/12. arXiv:1307.2903.
  7. The Spitzer-South Pole Telescope Deep Field: Survey Design and IRAC Catalogs
    M.L. Ashby, et al. (with L. Bleem)
    The Astrophysical Journal Supplement, 212, 16 (2014). DOI:10.1088/0067-0049/212/1/16. arXiv:1308.0201.
  8. A Measurement of the Secondary-CMB and Millimeter-wave-foreground Bispectrum using 800 square degrees of South Pole Telescope Data
    T.M. Crawford, K.K. Schaffer, S. Bhattacharya, et al.
    The Astrophysical Journal, 784, 143 (2014). DOI:10.1088/0004-637X/784/2/143. arXiv:1303.3535.
  9. The Coyote Universe Extended: Precision Emulation of the Matter Power Spectrum
    K. Heitmann, E. Lawrence, J. Kwan, S. Habib, and D. Higdon
    The Astrophysical Journal, 780, 111 (2014). DOI:10.1088/0004-637X/780/1/111. arXiv:1304.7849.
  10. Using Cross-Correlations to Calibrate Lensing Source Redshift Distributions: Improving Cosmological Constraints from Upcoming Weak Lensing Surveys
    R. de Putter, O. Dore, and S. Das
    The Astrophysical Journal, 780, 185 (2014). DOI:10.1088/0004-637X/780/2/185. arXiv:1306.0534.

Calendar Year 2013

  1. Detection of B-mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope
    D. Hanson, et al. (with L. Bleem)
    Physical Review Letters, 111, 141301 (2013). DOI:10.1103/PhysRevLett.111.141301. arXiv:1307.5830.
  2. Extragalactic millimeter-wave point source catalog, number counts and statistics from 771 square degrees of the SPT-SZ Survey
    L. Mocanu, et al. (with L. Bleem)
    The Astrophysical Journal, 719, 61 (2013). DOI:10.1088/0004-637X/779/1/61. arXiv:1306.3470.
  3. A direct measurement of the linear bias of mid-infrared-selected quasars at z~1 using cosmic microwave background lensing
    J. Geach, R. Hickox, L. Bleem, M. Brodwin, G. Holder, et al. (with S. Bhattacharya)
    The Astrophysical Journal Letters, 776, L41 (2013). DOI:10.1088/2041-8205/776/2/L41. arXiv:1307.1706.
  4. HACC: Extreme Scaling and Performance Across Diverse Architectures
    S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann, K. Kumaran, V. Vishwanath, T. Peterka, J. Insley, D. Daniel, P. Fasel, and Z. Lukic
    Proceedings of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis (2013). DOI:10.1145/2503210.2504566.
  5. The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data
    J. Sievers, et al. (with S. Das)
    Journal of Cosmology and Astroparticle Physics, 10, 060 (2013). DOI:10.1088/1475-7516/2013/10/060. arXiv:1301.0824.
  6. The Atacama Cosmology Telescope: The Stellar Content of Galaxy Clusters Selected Using the Sunyaev-Zel’dovich Effect
    M. Hilton, et al. (with S. Das)
    Monthly Notices of the Royal Astronomical Society, 435, 3469 (2013). DOI:10.1093/mnras/stt1535. arXiv:1301.0780.
  7. A CMB lensing mass map and its correlation with the cosmic infrared background
    G.P. Holder, et al. (with S. Bhattacharya)
    The Astrophysical Journal Letters, 771, L16 (2013). DOI:10.1088/2041-8205/771/1/L16. arXiv:1303.5048.
  8. Monopole Radiation in Modified Gravity
    A. Upadhye, and J.H. Steffen
    Submitted to Physical Review Letters. arXiv:1306.6113.
  9. Lensing Simulation and Power Spectrum Estimation for High Resolution CMB Polarization Maps
    T. Louis, S. Naess, S. Das, J. Dunkley, and B. Sherwin
    Monthly Notices of the Royal Astronomical Society, 435, 2040 (2013). DOI:10.1093/mnras/stt1421. arXiv:1306.6692.
  10. The Atacama Cosmology Telescope: Beam Measurements and the Microwave Brightness Temperatures of Uranus and Saturn
    M. Hasselfield, et al. (with S. Das)
    The Astrophysical Journal Supplement, 209, 17 (2013). DOI:10.1088/0067-0049/209/1/17. arXiv:1303.4714.
  11. Cosmological Parameters from Pre-Planck CMB Measurements
    E. Calabrese, et al. (with S. Das)
    Physical Review D, 87, 103012 (2013). DOI:10.1103/PhysRevD.87.103012. arXiv:1302.1841.
  12. The quest for axions and other new light particles
    K. Baker, et al. (with A. Upadhye)
    Annalen der Physik, 525, A93 (2013). DOI:10.1002/andp.201300727. arXiv:1306.2841.
  13. Symmetron Dark Energy in Laboratory Experiments
    A. Upadhye
    Physical Review Letters, 110, 031301 (2013). DOI:10.1103/PhysRevLett.110.031301. arXiv:1210.7804.
  14. Cosmic Emulation: The Concentration-Mass Relation for wCDM Universes
    J. Kwan, S. Bhattacharya, K. Heitmann, and S. Habib
    The Astrophysical Journal, 768, 123 (2013). DOI:10.1088/0004-637X/768/2/123. arXiv:1210.1576.
  15. Dark Matter Halo Profiles of Massive Clusters: Theory vs. Observations
    S. Bhattacharya, S. Habib, K. Heitmann, and A. Vikhlinin
    The Astrophysical Journal, 766, 32 (2013). DOI:10.1088/0004-637X/766/1/32. arXiv:1112.5479.
  16. The Atacama Cosmology Telescope: Physical Properties of Sunyaev-Zel’dovich Effect Clusters on the Celestial Equator
    F. Menateau, et al. (with S. Das)
    The Astrophysical Journal, 765, 67 (2013). DOI:10.1088/0004-637X/765/1/67. arXiv:1210.4048.
  17. The Atacama Cosmology Telescope: Data Characterization and Map Making
    R. Dunner, et al. (with S. Das)
    The Astrophysical Journal, 762, 10, (2013). DOI:10.1088/0004-637X/762/1/10. arXiv:1208.0050.
  18. The Multi-object, Fiber-fed Spectrographs for the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey
    S. Smee, et al. (with A. Pope)
    The Astronomical Journal, 146, 32 (2013). DOI:10.1088/0004-6256/146/2/32. arXiv:1208.2233.
  19. Computer Model Calibration using the Ensemble Kalman Filter
    D. Higdon, J. Gattiker, E. Lawrence, C. Jackson, M. Tobis, M. Pratola, S. Habib, K. Heitmann, and S. Price
    Technometrics, 55, 488 (2013). DOI:10.1080/00401706.2013.842936. arXiv:1204.3547.
  20. Gaussian Process Modeling of Derivative Curves
    T. Holsclaw, B. Sanso, H. Lee, K. Heitmann, S. Habib, D. Higdon, and U. Alam
    Technometrics, 55, 57 (2013). DOI:10.1080/00401706.2012.723918.

Calendar Year 2012

  1. Large Synoptic Survey Telescope: Dark Energy Science Collaboration
    LSST Dark Energy Science Collaboration
    arXiv:1211.0310.
  2. The Atacama Cosmology Telescope: Cross-Correlation of CMB Lensing and Quasars
    B. Sherwin, et al. (with S. Das)
    Physical Review D, 86, 083006. DOI:10.1103/PhysRevD.86.083006. arXiv:1207.4543.
  3. By Dawn’s Early Light: CMB Polarization Impact on Cosmological Constraints
    S. Das, and E. Linder
    Physical Review D, 86, 063520. DOI:10.1103/PhysRevD.86.063520. arXiv:1207.1105.
  4. Dark energy fifth forces in torsion pendulum experiments
    A. Upadhye
    Physical Review D, 86, 102003. DOI:10.1103/PhysRevD.86.102003. arXiv:1209.0211.
  5. The Universe at Extreme Scales: Multi-PetaFlop Sky Simulations on the BG/Q
    S. Habib, V. Morozov, H. Finkel, A. Pope, K. Heitmann, K. Kumaran, T. Peterka, D. Daniel, P. Fasel, N. Frontiere, and Z. Lukic
    Proceedings of SC12, Gordon Bell Award finalist. arXiv:1211.4864.
  6. Fundamental Physics at the Intensity Frontier
    J. Hewett, et al. (with A. Upadhye)
    ANL-HEP-TR-12-25, SLAC-R-991 (2012). arXiv:1205.2671.
  7. Designing dark energy afterglow experiments
    A. Upadhye, J.H. Steffen, and A.S. Chou
    Physical Review D, 86, 035006 (2012). DOI:10.1103/PhysRevD.86.035006. arXiv:1204.5476.
  8. Anomalous Afterglow Seen in a Chameleon Afterglow search
    J.H. Steffen, A. Baumbaugh, A.S. Chou, R. Tomlin, and A. Upadhye
    Physical Review D, 86, 012003 (2012). DOI:10.1103/PhysRevD.86.012003. arXiv:1205.6495.
  9. Quantum Stability of Chameleon Field Theories
    A. Upadhye, W. Hu, and J. Khoury
    Physical Review Letters, 109, 041301, (2012). DOI:10.1103/PhysRevLett.109.041301. arXiv:1204.3906.
  10. Bispectrum of the Sunyaev-Zel’dovich Effect
    S. Bhattacharya, D. Nagai, L. Shaw, T. Crawford, and G.P. Holder
    The Astrophysical Journal, 760, 5 (2012). DOI:10.1088/0004-637X/760/1/5. arXiv:1203.6368.
  11. Mass Reconstruction using Particle Based Lensing II: Quantifying Substructure with Strong+Weak lensing and X-rays
    S. Deb, A. Morandi, K. Pedersen, S. Riemer-Sorensen, D.M. Goldberg, and H. Dahle
    Submitted to ApJ. arXiv:1201.3636.
  12. Mapping Growth and Gravity with Robust Redshift Space Distortions
    J. Kwan, G. Lewis, and E. Linder
    The Astrophysical Journal, 748, 78 (2012). DOI:10.1088/0004-637X/748/2/78. arXiv:1105.1194.
  13. The Cosmic Web, Multi-Stream Flows, and Tessellation
    S. Shandarin, S. Habib, and K. Heitmann
    Physical Review D, 85, 083005 (2012). DOI:10.1103/PhysRevD.85.083005. arXiv:1111.2366.
  14. Analyzing the Evolution of Large Scale Structures in the Universe with Velocity Based Methods
    U. Popov, E. Chandra, K. Heitmann, S. Habib, J. Ahrens, and A. Pang
    PacificVis, 49, IEEE, (2012). DOI:10.1109/PacificVis.2012.6183573.

Select Past Publications

  1. Nonparametric Reconstruction of the Dark Energy Equation of State from Diverse Data Sets
    T. Holsclaw, U. Alam, B. Sanso, H. Lee, K. Heitmann, S. Habib, and D. Higdon
    Physical Review D, 84, 083501 (2011). DOI:10.1103/PhysRevD.84.083501. arXiv:1104.2041.
  2. Analyzing and Visualizing Cosmological Simulations with ParaView
    J. Woodring, K. Heitmann, J. Ahrens, P. Fasel, C. Hsu, S. Habib, and A. Pope
    The Astrophysical Journal Supplement, 195, 11 (2011). DOI:10.1088/0067-0049/195/1/11. arXiv:1010.6128.
  3. Mass Function Predictions Beyond LCDM
    S. Bhattacharya, K. Heitmann, M. White, Z. Lukic, C. Wagner, and S. Habib
    The Astrophysical Journal, 732, 122 (2011). DOI:10.1088/0004-637X/732/2/122. arXiv:1005.2239.
  4. Nonparametric Reconstruction of the Dark Energy Equation of State
    T. Holsclaw, U. Alam, B. Sanso, H. Lee, K. Heitmann, S. Habib, and D. Higdon
    Physical Review D, 82, 103502 (2010). DOI:10.1103/PhysRevD.82.103502. arXiv:1009.5443.
  5. The Accelerated Universe
    A. Pope, S. Habib, Z. Lukic, D. Daniel, P. Fasel, N. Desai, and K. Heitmann
    Computing in Science and Engineering 12, 17 (2010). DOI:10.1109/MCSE.2010.28.
  6. Particle mesh simulations of the Lyman-alpha forest and the signature of Baryon Acoustic Oscillations in the intergalactic medium
    M. White, A. Pope, J. Carlson, K. Heitmann, S. Habib, P. Fasel, D. Daniel, and Z. Lukic
    The Astrophysical Journal, 713, 383 (2010). DOI:10.1088/0004-637X/713/1/383. arXiv:0911.5341.
  7. The Coyote Universe I: Precision Determination of the Nonlinear Matter Power Spectrum
    K. Heitmann, M. White, C. Wagner, S. Habib, and D. Higdon
    The Astrophysical Journal, 715, 104 (2010). DOI:10.1088/0004-637X/715/1/104. arXiv:0812.1052.
  8. The Coyote Universe II: Cosmological Models and Precision Emulation of the Nonlinear Matter Power Spectrum
    K. Heitmann, D. Higdon, M. White, S. Habib, B.J. Williams, E. Lawrence, and C. Wagner
    The Astrophysical Journal, 705, 156 (2009). DOI:10.1088/0004-637X/705/1/156. arXiv:0902.0429.
  9. The Coyote Universe III: Simulation Suite and Precision Emulator for the Nonlinear Matter Power Spectrum
    E. Lawrence, K. Heitmann, M. White, D. Higdon, C. Wagner, S. Habib, and B.J. Williams
    The Astrophysical Journal, 713, 1322 (2010). DOI:10.1088/0004-637X/713/2/1322. arXiv:0912.4490.
  10. Hybrid petacomputing Meets Cosmology: The Roadrunner Universe Project
    S. Habib, A. Pope, Z. Lukić, D. Daniel, P. Fasel, N. Desai, K. Heitmann, et al.
    Journal of Physics: Conference Series, 180, 012019 (2009). DOI:10.1088/1742-6596/180/1/012019.
  11. The Cosmic Code Comparison Project
    K. Heitmann, Z. Lukic, P. Fasel, S. Habib, M. Warren, M. White, J. Ahrens, et al.
    Computational Science and Discovery, 1, 015003 (2008). DOI:10.1088/1749-4699/1/1/015003. arXiv:0706.1270.
  12. Cosmic Calibration: Constraints from the Matter Power Spectrum and the Cosmic Microwave Background
    S. Habib, K. Heitmann, D. Higdon, C. Nakhleh, and B. Williams
    Physical Review D, 76, 083503 (2007). DOI:10.1103/PhysRevD.76.083503. arXiv:0702348.